Назначение и устройство щелевых выдвижных закрылков. «Закрылки — это очень критично

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Предкрылки

Система управления предкрылками двухканальная. Управляется двумя независимыми вычислителями-контроллерами (МАСЕ). Левый и правый предкрылок разделены на 4 секции каждый. Каждая секция подвешена на двух рельсах. Перемещение предкрылков обеспечивается электроприводом (PDU). Привод расположен в центроплане, по оси симметрии самолёта и представляет собой блок из 2-х э/моторов, соединённых между собой редуктором. Передача крутящего момента от привода осуществляется механической трансмиссией.

Трансмиссия начинается в ЦП и проходит по всему размаху предкрылков вдоль переднего лонжерона крыла. Вся трансмиссия закрывается съёмными лючками-лентами на нижней панели крыла, крепёж — на винтах. Состоит из промежуточных карданных валов (по 14 шт. в каждой консоли) и редукторов:

  • по два конических редуктора в ЦП с правого и левого борта — для изменения направления трансмиссии на участке от э/привода до бортовой нервюры;
  • по одному согласующему редуктору для параллельного смещения валов в зоне пилона двигателя.

Валы передают вращение на приводы с планетарной передачей (ППП, по 8 шт. в каждой консоли). ППП вращают шестерни, вращение которых перемещает зубчатые рейки на рельсах предкрылков. При уборке предкрылков, рельсы задвигаются в специальные углубления (стаканы) в переднем лонжероне, т.е. в кессон крыла. На конце каждого рельса крепится упор. Выход любого рельса на упор, приведёт к превышению заданной величины крутящего момента и срабатыванию фрикционной муфты в соответствующем ППП. Это вызовет её стопорение и выскакивание мех. сигнализатора (солдатика) на данном приводе.

Кроме этого, трансмиссия включает в себя по тормозному механизму и по сдвоенному блоку (для 2-х каналов) датчиков рассогласования, расположенных на самом конце трансмиссии, в каждой консоли крыла. Сигналы сравниваются между датчиками рассогласования левой и правой консолей. Фрикционный тормоз служит для блокировки вращения трансмиссии:

  • при любом отказе, способном привести к несимметричному положению предкрылков;
  • при рассогласовании заданного и текущего положений предкрылков;
  • при отказе двух двигателей привода или 2 вычислителей МАСЕ.

При отказе одного э/двигателя или МАСЕ система продолжит работать с уменьшенной в два раза скоростью перемещения.

Закрылки

Закрылком называют несущую поверхность с профилем, образованным из хвостовой части крыла, при отклонения вниз, обеспечивается изменение кривизны профиля и увеличение площади крыла, а также «щелевой эффект», т.е. смещение точки отрыва пограничного слоя к задней кромке. Углы отклонения всех закрылков имеют критическую величину, после которой дальнейшее отклонение сопровождается не приращиванием, а уменьшением подъёмной силы. При посадке угол отклонения закрылков больше, нежели при взлёте.
На крыле самолёта SSJ-100 установлены внутренний и внешний закрылки, однощелевые, однозвенные, каждый из них отклоняется во взлетное и посадочное положение с помощью двух винтовых механизмов.
Внешний закрылок расположен в хвостовой части крыла между внутренним закрылком и элероном. Закрылок установлен на каретках, перемещающихся по двум рельсам, размещенных в балках, закрепленных на крыле.


Внутренний закрылок располагается за балкой шасси хвостовой части крыла, между бортом фюзеляжа и изломом стреловидности крыла, и установлен на каретках, перемещающихся по двум рельсам: один рельс расположен на борту фюзеляжа, другой - на балке, установленной на крыле.


Система управления закрылками устроена также как и у предкрылков. Разница состоит в наличии большего числа редукторов и использовании шарико-винтовых механизмов (ШВМ) вместо зубчатых реек.

При работе СДУ в режиме «Normal Mode» положение предкрылков/закрылков задаётся рукояткой FLAPS в кабине + автоматически корректируется по V инд (от вычислителей СДУ верхнего уровня). Это позволяет реализовать ступенчатую уборку механизации при превышении соответствующего значения V fe , или её выпуск при потере самолётом скорости. В случае перехода СДУ в режим «Direct» положение механизации управляется только рукояткой «FLAPS».

Принудительный выпуск механизации крыла производится только из полётной конфигурации FL0 в положение FL1, при потере скорости ниже 200 kt (рукоятка «FLAPS» находится в положении «0»).

При установке рукоятки в любое положение, отличное от «0», (например «FULL»), по мере торможения самолёта, механизация будет последовательно выпускаться в каждое из своих положений - «1», «2», «3», «FULL», при уменьшения скорости ниже V fe -3kt для соответствующей конфигурации.

Для конфигурации FL1 скоростное ограничение намного выше указанного значения и составляет V fe = 250 kt (463 км/ч). С другой стороны, расхождение в показаниях СВС, вызывает переход СДУ в упрощённый режим «Degrade Mode», а отказ всех трёх СВС — в минимальный режим «Direct Mode». При этом функции автоматических ограничителей отключаются.

В режиме «Direct» в «живых» остаётся только функция демпфирования по угловым скоростям, а сигналы от БРУ и педалей напрямую поступают на контроллеры управления приводами (АСЕ), без каких-бы то ни было «наворотов» (на Су-27 подобный режим СДУ называется «жёсткая связь»). Управление интерцепторами и тормозными щитками, в этой ситуации, обеспечивается напрямую — только от рукояток «Speed Brake » и «Flaps». Безопасную скорость ГП, в случае отказа всех СВС, можно выдерживать по показаниям угла атаки, или угла тангажа от ИНС.

По материалам Engineer_2010

Стоит ли упоминать, что вся система разработана нашими инженерами фирмы Гражданские Самолеты Сухого?

Механизация крыла самолёта SSJ100 | Предкрылки | Фото: интернет

Предкрылок убран | Предкрылок выпущен

Механизация крыла самолёта SSJ100 | Закрылки | Фото: интернет

Закрылок убран | Закрылок выпущен, посадочная конфигурация

Обсуждение

Вопрос: предположим, что предкрылки не вышли совсем… Ну заклинило пресловутый подшипник сразу. Почему я не могу выпустить закрылки при таком раскладе?

Инженер2010: В принципе, это возможно, но только в пределах «соседней» конфигурации. При установке рукоятки управления механизацией (FLAPS) в позицию «1», в случае заклинивания предкрылков в убранном состоянии (0 град.) закрылки выпустятся в первое фиксированное положение — 3 град. Но не дальше, так как автоматика контролирует положение закрылков относительно предкрылков.

Надо уточнить, что положению рукоятки «1» соответствуют две разных конфигурации, «FL 1» и «FL 1 + F»:

  • в полёте, предкрылки и закрылки выпустятся в положение «FL 1» (18 град. / 3 град.);
  • на земле, при постановке рукоятки в положение «1» они выпустятся в положение «FL 1 + F» (18 /9).

При разгоне самолёта до V пр > 200 kt, механизация крыла автоматически перейдёт в конфигурацию «FL 1», то есть произойдёт «подуборка» закрылков.

Второй момент — всем остальным взлётным и посадочным конфигурациям самолёта (положения рукоятки «2», «3» и «FULL») соответствует одно положение предкрылков — 24 град. и три разных положения закрылков — 16, 25 и 36 град. соответственно.

APZ: а как при этом меняется угол установки стабилизатора?
sys: Думаете РВ при необходимости не хватит?

Переставной стабилизатор на SSJ выполняет роль триммера в продольном канале. На земле или при работе СДУ в минимальном режиме «Direct mode» стабилизатор надо устанавливать вручную — при помощи кнюппеля. А в полёте с СДУ работающей в режиме «Normal» самолёт балансируется автоматически — стабилизатор самостоятельно перемещается в новое положение при выпуске или уборке механизации, шасси, изменении центровки или режима двигателя,. Поэтому самолёт сбалансирован в полёте при нейтральном положении БРУ, а руль высоты (РВ) находится в околонулевом положении. Конечно, всякие резкие возмущения первоначально парируются отклонением РВ, но после этого в работу включается механизм перемещения стабилизатора (МПС), а РВ «списывается» в нейтральное положение. В итоге — РВ на всех режимах обладает достаточным запасом для маневрирования по тангажу.

Скажу банальность: посадка – самый сложный этап полета.

Точка 1. Until established.


Итак, мы знаем полосу для посадки – 19. Диспетчер вывел нас на высоту, с которой мы будем входить в глиссаду – 2960 футов. До осевой линии полосы 5–7 миль (не до полосы, а до ОСЕВОЙ ЛИНИИ ВПП!). Мы по-прежнему летим на автопилоте, на котором активны режимы SPEED, HDG SEL и ALT HOLD.

О закрылках

Сейчас нам понадобится таблица закрылки/скорость. Ее нужно было написать на клейкой бумажке и прилепить где-нибудь рядом с монитором заранее.

Например, таблица ограничений скорости по закрылкам может выглядеть следующим образом (здесь для 600/700/800/900 серий):

Для серий с 300 по 500:

Если в таблице указано 10°/210, то это значит, что на скорости выше 210 узлов выпускать закрылки на 10 градусов и более – запрещено. Может плохо кончится.

Кроме ограничений при посадке нам понадобятся т.н. рекомендованные скорости. Рекомендованные скорости (Flap Maneuvering Speed – Vm) обеспечивают полную способность воздушного судна к маневрированию на небольших высотах с выпущенными закрылками. Согласно этих данных мы и будем выпускать закрылки при снижении скорости для захода на посадку.

Для крафтов серий с 300 по 500 таблица скорости/закрылки выглядит следующим образом:

Положение Закрылок

А для крафтов серий с 600 по 900 используется зависимость от посадочной скорости – Vref – при закрылках 40° (см. FMC):

Эти таблицы вы сможете найти в разделе «Приложения». Они расположены таким образом, чтобы их можно было отксерокопировать и использовать отдельно от книги.

Вернемся в кабину.

Итак. До оси полосы миль 5–7, мы подходим к ней перпендикулярно или почти перпендикулярно и видим ее на экране навигационного дисплея. Закрылки выпущены на 1 градус. Скорость – соответствующая. Не забываем тормозить спойлерами по мере необходимости.

Крутим ручку задатчика курса на МСР и начинаем разворачиваться к оси полосы. Закрылки на 5 градусов. Скорость – соответствующая.

Следим за шкалой скорости на основном дисплее, а точнее за отметками закрылок на шкале – это очень серьезная помощь пилоту.

Закрылки при посадке выпускаются в такой последовательности: 1 – 5 – 15 – посадочное положение.

Точка 2. До ОСИ полосы 1–2 мили.

Жмем кнопку APP на МСР.

Точка 3. Есть захват локалайзера.

Локалайзер – курсовой радиомаяк. Вот – что сейчас главное. Указатели (повторители) курсового маяка (1) и глиссадного (2) на основном дисплее.

Указатель глиссады на шкале должен быть НАД центральной риской (3) – это значит, что мы под глиссадой, значит, что все идет как надо. Если указатель внизу, то мы над глиссадой – мы промахнулись и придется идти на второй круг.

Самолет автоматом выравнивается по оси полосы и движется на курсовой маяк (Localizer ) тем курсом, который мы выставили в окошке COURSE. Снижение еще не началось.

Указатель глиссадного маяка начал движение, значит – выпускаем шасси. Следом выпускаем закрылки на 15 градусов.

15 градусов – скорость соответствующая.

15 градусов – время армировать спойлеры.

15 градусов – переключатели стартеров ENGINE START – в положение CONT.

Если вы еще не поставили AUTOBRAKE в положение 2, 3 или MAX, то сейчас самое время. Обычно это делается еще перед началом снижения с эшелона.

Точка 4. Покатились по глиссаде.

Когда курсор глиссадного маяка окажется в середине шкалы, начнется автоматическое снижение по глиссаде.

Скорость при снижении и соответствующие закрылки нужно искать в FMC, нажав кнопку INIT REF. Выглядит это так (например):

15° / 152 kts 30° / 145 kts 40° / 142 kts

Из этого списка мы можем выбрать любую конфигурацию: садимся на скорости 152 узла при закрылках 15 градусов. Или закрылки 30 градусов, а скорость – 145 узлов.

Или 40 градусов при 142 узлах. 40 градусов обычно применяется на аэродромах с короткой полосой или при очень крутой глиссаде.

Мы сейчас будем использовать конфигурацию в 30 градусов.

Но. Эти скорости – Vref – рассчитаны без учета ветра. Рассмотрим этот момент внимательнее.

И о погоде…

Скорость Vref НЕ является той, которую следует выдерживать при полете в глиссаде. Мы должны увеличить эту скорость на половину встречной составляющей ветра и прибавить полный прирост порыва над устойчивым ветром. Что это значит?

Например, садимся мы в Симферополе на ВПП 19, а ветер 190 градусов, 20 узлов. Значит, ветер строго в лоб, делим 20 на два. Значит, надо добавить 10 узлов. Или, там же: ветер 100 градусов, скорость 20 узлов, порыв 30 узлов. Значит, встречная составляющая – ноль (ветер строго в бок), но есть порыв. Его превышение над устойчивым ветром 10 узлов (30-20=10), значит, в этом случае будем увеличивать на 10 узлов.

Есть правило – скорость в глиссаде в любом случае не менее, чем +5 к Vref и не более, чем +20 (не более, чем ограничение по закрылкам, уменьшенное на 5 узлов).

Таблица попутных составляющих:

Вернемся в кабину

Теперь на МСР активны функции SPEED, APP, CMD A. Такие параметры как ALTITUDE и HEADING свободны для изменений. Заглядываем в карту: как уйти на второй круг – высота и курс? Выставляем в окошечке ALTITUDE высоту ухода на второй круг – 4000 футов (по карте – 3940, но на МСР шаг 100 футов) и курс ухода – 190 (окошечко HEADING). На процесс посадки это никак не повлияет, а нам поможет быстро и безболезненно уйти на второй круг, если это понадобится.

Точка 5. Высота 2500 футов. RadioAlt.

На основном дисплее появился новый альтиметр – радиоальтиметр, который показывает высоту над поверхностью земли.

Сейчас события начнут развиваться, как писали классики, «стремительным домкратом», поэтому в первых ваших полетах при взлете и посадке включите замедление времени. Иначе не успеете среагировать. Потом, когда приноровитесь и будете чувствовать машину, сможете летать в нормальном времени.

Точка 6. Две мили до порога ВПП.

Две мили до порога это – 640 футов высоты при глиссаде в 3 градуса. Снижаемся на автопилоте примерно до этой отметки и отключаем автопилот. Будет верещать сигнализация – не пугаемся. Теперь мы держим самолет руками. Наша задача сохранить ту же траекторию, какая была до отключения автопилота.
Следом отключаем автотягу. Если мы этого не сделаем, то на высоте 27 футов над порогом автоматика самостоятельно начнет ставить малый газ.

Точка 7. Высота принятия решения (DH).

Высота принятия решения: садиться – не садиться. Не в том смысле, что вы передумали: тут погода плохая. А в смысле – сможем ли мы посадить самолет в данных условиях. Реально оцениваем ситуацию: видим ли мы полосу, как она расположена относительно нас и т.д. Если не сможем посадить, то уходим на второй круг.

Высота принятия решения вовсе не означает, что после ее прохождения вы любой ценой должны посадить самолет. Нет – вы можете уйти на второй круг даже после касания полосы.

На высоте принятия решения пилот должен решить: продолжать ли заход на посадку.

В симуляторе по умолчанию высота принятия решения – 200 футов.

Точка 8. Высота 20 футов.

Начинаем переводить двигатели на малый газ. Не сразу, а постепенно – так, чтобы к моменту касания полосы двигатели крутились на «холостом ходу».

Точка 9. Касание.

Вначале приземляем основные шасси. Потом аккуратненько опускаем стойку переднего шасси. Срабатывает автоматический выпуск спойлеров. Автоматом врубаются тормоза шасси.

Механизация крыла - это система устройств (закрылки, предкрылки, интерцепторы, спойлеры, тормозные щитки) предназначенные для управления подъёмной силой У и лобовым сопротивлением X самолёта, улучшая взлётно-посадочные характеристики (ВПХ).

Рост скоростей полёта самолёта, которым сопровождается развитие авиации, влечёт за собой рост взлётно-посадочных скоростей, что усложняет технику пилотирования и требует увеличения длины взлетно-посадочной полосы (ВПП).

Основным способом улучшения ВПХ является оснащение крыла мощной механизацией.

Задача механизации крыла:

При взлёте - создание наибольшей подъёмной силы У без значительного увеличения лобового сопротивления X;

При посадке - наибольшей подъёмной силы У и наибольшего лобового сопротивления X;

Улучшение маневренных характеристик и активного парирования перегрузок, возникающих во время полёта.

Минимальная скорость полёта соответствует полёту на околокритических углах атаки при С у ≈ С у max


Зависимость Су= f (α) для различных видов механизации.

1. Крыло без механизации.

2. Крыло с предкрылком.

3. Крыло с щелевым закрылком.

4. Крыло с щелевым закрылком и предкрылком.

К основным видам механизации крыла относится:

Закрылки;

Предкрылки;

Интерцепторы;

Требования к механизации крыла:

Максимальное С у α при отклонении средств механизации в посадочное положение при посадочных углах атаки α самолёта;

Минимальное С х α в убранном положении средств механизации;

максимальное качество К при разбеге самолёта и возможное С у α при отклонении средств механизации во взлётное положение;

Возможно меньшее изменение смещения центра давления (ЦД) крыла при отклонении

ВПМ (взлётно - посадочной механизации);

Синхронность действий ВПМ на обеих консолях крыла;

Простота конструкции и надёжность работы.

Факторы увеличивающие несущую способность крыла и тем самым улучшающие ВПХ самолёта достигаются:

Увеличением эффективной кривизны профиля крыла при отклонении

средств механизации;

Увеличением площади крыла;

Управлением пограничным слоем для безотрывного обтекания

верхней поверхности крыла и затягивания срыва на бОльшие углы атаки за счёт скорости пограничного слоя: - эффектом щелей;

Отсосом пограничного слоя.

Улучшение взлетно-посадочных характеристик самолета и, прежде всего, снижение его посадочной скорости и скорости отрыва на взлете обеспечивается применением средств механизации крыла. К этим средствам относятся устройства, позволяющие изменять несущую способность и сопротивление крыла. Они могут устанавливаться по передней кромке крыла - предкрылок, отклоняемый носок, по задней кромке - щитки, закрылки (одно-, двух-, трехщелевые) и на верхней поверхности крыла - тормозные щитки и гасители подъемной силы. Закрылки, щитки, предкрылки перед посадкой отклоняются (и выдвигаются) на максимальные углы, обеспечивая прирост несущей способности крыла (С yа S) за счет увеличения кривизны профиля, некоторого увеличения площади крыла и за счет щелевого эффекта. Рост несущей способности крыла уменьшает посадочную скорость самолета. На взлете эта механизация отклоняется на меньшие углы, обеспечивая некоторое увеличение несущей способности при незначительном росте сопротивления, в результате чего сокращается длина разбега самолета. Тормозные щитки и гасители подъемной силы обычно отклоняются на пробеге, обеспечивая резкое падение подъемной силы крыла, что позволяет более интенсивно использовать тормоза колес и сокращать длину пробега. На величину посадочной скорости и скорости отрыва они не влияют. Тормозные щитки и гасители подъемной силы также могут использоваться в полете для уменьшения аэродинамического качества и увеличения угла планирования при снижении.

На рисунке цифрами обозначены:
1 - предкрылки, 2 - закрылки, 3 - гасители подъемной силы- интерцепторы, спойлеры, 4 - тормозной щиток, 5- элерон.

Щитки представляют собой отклоняемые вниз поверхности, расположенные в нижней части крыла. В неотклонённом положении щитки вписываются в контур профиля крыла. Угол отклонения до 60°.

Отклоняемый выдвижной


- двухщелевые;

Трёхщелевые раздвижные.

Рис.3. 7. Двухщелевой закрылок

Хорда закрылков составляет 30 - 40 % хорды крыла.

Повышение коэффициента С у у крыла происходит вследствии:

Увеличения вогнутости крыла;

Увеличения площади крыла;

Организации безсрывного обтекания крыла.

Так как закрылок отклоняется вниз, то увеличивается вогнутость, одновременно выдвигается назад и увеличивается хорда, а значит, площадь крыла S KP .

Применение щелевых закрылков создаёт между крылом и закрылком профилированную щель, через которую воздух устремляется из области повышенного давления под крылом в область пониженного давления над крылом. При этом сдувается пограничный слой с верхней стороны закрылка и отсасывание его.

Элементы конструкции закрылка:

Лонжероны, нервюры, стрингеры, обшивка;

Каретки и рельсы;

Винтовые подъёмники, которые служат для перемещения закрылков.

В трёхщелевом закрылке: - дефлектор;

Силовая центральная часть;

Хвостик.

Предкрылки - это профилированный подвижный элемент крыла, расположенный в носовой части крыла по всему размаху, либо на концевых его частях против элеронов (концевой предкрылок).

Предкрылок имеет: эл. обогрев -Ту-154; воздушно-тепловой - Ил-76. Состоит из секций.

Предкрылок обеспечивает возможность реализации прироста С у α , даваемого средствами механизации, повышает эффективность элеронов на больших углах атаки α и повышает поперечную устойчивость самолёта (при стреловидных крыльях).

Тип: - отклоняемые носки;

Выдвижные с образованием щели между крылом и предкрылком.

Конструкция: - лонжерон, нервюры, обшивка, рельсы, каретки, винтовые преобразователи.

Рис. 3.8. Предкрылок.

Предкрылки могут управлятся пилотом или автоматически. Предкрылки выдвигаются вперёд и вниз и при этом:

Увеличивается площадь крыла S kp и кривизна профиля;

Образуется щель и выходящая струя из щели с большой скоростью

прижимает воздушный поток к верхней поверхности крыла Использование предкрылков увеличивает на 40-50% С у max за счёт увеличения критического угла атаки (α кр.)

Интерцепторы это подвижные части крыла в виде профилированных щитков (пластин), расположенные на верхней поверхности крыла перед закрылками и служащие для управления подъёмной силой.

Интерцепторы (спойлеры), с точки зрения а/д, это гасители подъёмной силы, тормозные щитки, отклоняющиеся вверх симметрично на обеих консолях крыла, вызывая срыв потока, за счёт этого уменьшается подъёмная сила и увеличивается лобовое сопротивление, а в убранном положении утоплены в крыло. В элеронном режиме вверх отклоняется только тот, где отклонился элерон вверх, при этом создаётся крен самолёта, т.е. увеличивается эффективность элеронов.


Интерцепторы применяются в полёте и на земле. В полёте для изменения эшелона полёта, т. ↓H и ↓V. На земле для Х (лобового сопротивления) и как следствие ↓L пробега после приземления.

В настоящее время разработаны энергетические средства механизации крыла, в которых используется сжатый воздух, подаваемый от компрессоров двигателей или специальных вентиляторов.

Улучшение а/д характеристик крыла достигается:

Управлением пограничным слоем за счет отсоса или сдува с верхней поверхности крыла, предкрылков и закрылков через специальные отверстия, щели, пористые поверхности;

Применением струйно-реактивного закрылка – профилированной щели вдоль задней кромки крыла, через которую назад и вниз выбрасывается струя воздуха.

Она эжектирует окружающий воздух, увеличивает скорость обтекания крыла, создает дополнительную силу за счет вертикальной составляющей реактивной тяги воздушной струи.

На современных самолётах, как правило, применяется комплексная механизация крыла, т.е. сочетание различных видов механизация крыла, т.е. сочетание различных видов механизации.


Элероны это подвижные части крыла, расположенные у задней кромки крыла на его концах и отклоняемые одновременно в противоположные стороны (один элерон вверх, а другой - вниз) для создания крена самолёта.

Предназначены элероны для управления самолётом относительно его продольной оси ОХ. Управление производится штурвалом пилота.

Требования к элеронам: обеспечение эффективности управления по крену на всех режимах полёта. Это достигается:

Исключением заклинивания элеронов при изгибе крыла в полёте;

Весовой балансировкой элеронов;

Уменьшением шарнирных моментов (за счёт а/д компенсации); уменьшением дополнительного сопротивления в отклонённом и убранном положениях;

Уменьшением момента рыскания при отклонении элеронов;

Применение элерон-интерцепторов;

Применение дифференциально отклоняемых половин стабилизатора. Конструкция элеронов: форма аналогичная крылу и состоит из каркаса и обшивки.

Каркас: лонжерон, стрингера, нервюры, диафрагмы и обшивка.


Похожая информация.


Билет №1

Механизация крыла представляет собой систему устройств (закрылков, щитков, предкрылков предназначенных для управления подъемной силой и сопротивлением самолета главным образом для улучшения его ВПХ. Эти же устройства могут применяться для повышения маневренных возможностей легких скоростных самолетов, а часть из них, например предкрылки, - для улучшения поперечной устойчивости и управляемости самолета при полете на больших углах атаки, особенно на самолетах со стреловидным крылом.

Здесь в носовой части крыла - предкрылки 1 или отклоняемые носки 8; в хвостовой части крыла - закрылки (поворотно- выдвижные 9, одно-, двух- или трехщелевые 5), элерон-закрылок 10, гасители подъемной силы (тормозные щитки) 2. Все эти средства позволяют управлять подъемной силой и сопротивлением крыла, улучшая ВПХ самолета. 6- внешний элерон, 3- внутренний элерон, 4- интерцептор, 7 – триммеры. Требования к механизации крыла: максимальное увеличение при отклонении средств механизации в посадочное положение при посадочных углах атаки самолета, минимальное увеличение в убранном положении средств механизации, максимальное значение аэродинамического качества при разбеге самолета с небольшой тяго вооруженностью, синхронность действий механизации на обеих консолях крыла, простота конструкции и высокая надежность работы.

Факторы, увеличивающие несущую способность : увеличением эффективности кривизны профиля крыла при отклонении средств механизации в рабочее положение, увеличением площади крыла при применении выдвижных щитков или выдвижных закрылков, управлением пограничным слоем для обеспечения безотрывного обтекания верхней поверхности крыла или затягивания срыва на большие углы атаки за счет увеличения скорости пограничного слоя. Щитком наз-ся подвижная часть нижней поверхности крыла у его задней кромки, отклоняемая вниз для увеличения подъемной силы крыла и его сопротивления. Различают щитки с фиксированной осью вращения и выдвижные. Прирост подъемной силы получается за счет увеличения эффективной кривизны профиля при выпуске щитков и откоса пограничного слоя с верхней поверхности крыла в зону разрежения за щитком. Критические углы атаки крыла с выпущенными и убранными щитками близки между собой. Для выдвижных щитков прирост подъемной силы получается и за счет увеличения площади крыла. Конструкция щитка состоит из каркаса и обшивки. К каркасу крепится обшивка. Крепление к крылу - при помощи шомпола на специальном профиле в передней части щитка и на заднем лонжероне крыла.

Закрылки - профилированная подвижная часть крыла, расположенная в его хвостовой части и отклоняемая вниз для увеличения подъемной силы крыла. Различают поворотный закрылок - поворачиваемый вокруг связанной с крылом оси вращения, выдвижной - поворачиваемый относительно оси вращения и одновременно смещаемый назад вдоль хорды крыла для увеличения его площади, щелевой - при отклонении которого между его носком и крылом образуется профилированная щель, многощелевой закрылок, составленный из нескольких подвижных звеньев отклоняющихся на разные углы и разделяющихся профилированными щелями. Конструкция поворотного закрылка состоит из каркаса и обшивки. Каркас обычно состоит из одного лонжерона, стрингеров и нервюр. Задняя часть закрылка может иметь сотовую конструкцию, что повышает его жесткость и уменьшает массу. Навеска такого закрылка осуществляется при помощи кронштейнов. Для его выдвижения назад по хорде и отклонения вниз используют специально спрофилированные направляющие рельсы, закрепленные на усиленных нервюрах крыла и опирающиеся на эти рельсы ролики, установленные на торцевых нервюрах закрылка на кронштейнах. На лонжероне закрылка закреплен кронштейн, с которым связана тяга силового привода выпуска и уборки закрылка. Очертания носка закрылка и задней части крыла, положение неподвижной оси вращения закрылка выбираются так, чтобы при отклонении закрылка образовывалась профилированная щель, ускоряющая движение проходящего через нее воздуха и направляющая его вдоль верхней поверхности закрылка. Это позволяет получит более высокие значения коэф-та подъемноой силы на взлете и посадке. Дефлектор -профилированная часть закрылка, установленная неподвижно перед носком закрылка и образующая щель перед ним. Конструкция 3-щелевого выдвижного закрылка. Он состоит из основного и хвостового звеньев и дефлектора. Основное звено является центральной несущей частью и главным силовым элементом закрылка, на котором монтируются хвостовое звено и дефлектор. Гасители подъемной силы (тормозные щитки) и интерцепторы-подвижные части крыла в виде профилированных щитков расположенные на верхней поверхности крыла впереди закрылков и служащие для управления подъемной силы. При включении гасители подъемной силы (тормозные щитки) отклоняются вверх симметрично на обеих половинах крыла, а при включении интерцепторов вверх отклоняется интерцептор только той половины крыла, в сторону которой надо создать крен. Поэтому интерцепторы являются органом поперечной управляемости самолета. Использование гасителей подъемной силы при заходе на посадку позволяет уточнять заход, увеличивая крутизну планирования, т. к. при отклонении этих средств механизации уменьшается подъемная сила крыла и увеличивается его сопротивление. Предкрылки - профилированная подвижная часть крыла, расположенная в носовой его части. При выпуске предкрылков между ними и носовой частью крыла образуется профилированная щель, обеспечивающая более устойчивое обтекание крыла на больших углах атаки. При работе трансмиссии ее механизмы перемещают предкрылок рельсами по кареткам, закрепленным на переднем лонжероне крыла. Щитки Крюгера устанавливают в корневой части крыла на его носке. Они обеспечивают безотрывное обтекание крыла только до определенного угла атаки, после чего начинается резкий срыв потока. Поэтому наиболее ранний срыв потока в корневой части стреловидного крыла при отсутствии срыва на его концевых частях создает пикирующий момент на уменьшение углов атаки, что повышает безопасность полета.

2.Технологический процесс (ТП) и его структура. Классификация ТП, виды документации, унифицированные ТП .

В зависимости от типа производства разраб-ся технол-ое описание произв-ых процессов на различном уровне. В условиях многономенклатурного, единичного или многосерийного производства разраб-ся в осн-ом маршрутные ТП. В маршр. карте указывают какая пов-ть обраб-ся, а также указ-ют оборудование и норму времени. Такие компоненты технологии как оснащение (приспос. зажимное, шпиндельная оснастка, патроны, суппорты, инструмент режущий и мерительный) выбирает высококвалифицированный рабочий. Для деталей параметры которых точнее 11 квалитета разраб-ся маршр-опер процессы т.е. на отдельной операции такого процесса разр-ют операц карты. Это операции на которых формируется точность наиболее отв-ных пар-ров, на них как правило важную роль играет базирование, метод настройки оборудования оснащ, всё это указ-ся в операц картах, указ режим межпереходные размеры, припуски. Операц ТП с заполнением на всю деталь разрабатывают в случае крупносерийрого или массового производства.

Еденичным ТП – назыв ТП изгот или ремонта изделия одного наименования типа размера и исп-я независимо от типа произодства.

Униф-ным ТП – назыв процесс относящийся к группе изделий, деталей, сб едениц хар-ся общностью констр-х и технологич признаков.

Среди униф различают типовые и групповые ТП

К констр признакам относ: форму, размеры их точность, шероховатость поверхн, материал, прочность, твёрдость.

К тех-им признакам относят: типовые схемы базир-я, типовые методы обр-ки эл-х пов-тей.

Типовой ТП – это процесс изгот-я изделий с общими технол признаками

Групповой ТП – это процесс изготовления группы изделий с общими технол признаками

Проект-ныйТП – это поцесс выполняемый по предварительному проекту тех-ой документации. ТП соотв-ий современным достиж-ям науки и техн. , методы и ср-ва осущ-я которого предстоит освоить назыв проектным

ТП выполн по рабочей техн и констр докум-ции назыв рабочим

ТП применяемый на предпр огранич период времени назыв временным.

ТП установл гос стандартом наз стандартным

ТП в составл которого включается не только технол операции, но и операции переем-ия, контроля, отчистки наз-ся комплексным

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Презентация на тему: Невербальные средства общения Презентация на тему: Невербальные средства общения Турагент: бесплатные путешествия или нервная работа? Турагент: бесплатные путешествия или нервная работа? Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений