Классификация сталей по методу получения. Маркировка стали по российской, европейской и американской системам

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Сталью именуется ковкий, деформируемый сплав железа, некоторого количества углерода (не более 2,14 %), а также незначительного количества других элементов. Именно этот материал широко применяется для изготовления самых разнообразных приборов, инструментов и строительных конструкций. Классификация и применение сталей зависят от многих факторов, которые необходимо разобрать подробнее. Изменяя химический состав этого материала за счет концентрации углерода и привнесения легирующих элементов, можно получать широкий диапазон сталей с абсолютно различными свойствами, что позволяет использовать этот материал во всех отраслях хозяйствования.

Сталь: классификация, применение, маркировка

Прежде всего стоит сказать, что сталь бывает углеродистая и легированная. Это зависит от того, были ли добавлены в сплав специальные легирующие элементы - алюминий, никель, хром, молибден, титан, бор, ванадий, марганец и другие. Все эти добавки применяются для повышения специфических свойств стали, а наилучший результат достигается комплексным легированием.

В общем случае стали классифицируют:

  • по назначению;
  • по качеству;
  • по способу производства;
  • по микроструктуре;
  • по химическому составу.

Химический состав

Как уже было сказано, классификация сталей в зависимости от химсостава разделяет этот материал на две большие группы:

  • легированные;
  • углеродистые.

В свою очередь, каждую из этих групп можно дополнительно разделить на несколько частей. Классификация легированных сталей подразумевает наличие таких видов:

  • низколегированные содержат незначительное количество (до 2,5 %) легирующих добавок;
  • среднелегированные - количество дополнительных элементов не превышает 10 %;
  • высоколегированные характеризуются наличием легирующих элементов в количестве более 10 %.

Можно также разделить и вторую группу. Классификация углеродистых сталей выглядит так:

  • высокоуглеродистые характеризуются содержанием углерода более 0,6 %;
  • среднеуглеродистые содержат от 0,25 до 0,6 % углерода;
  • малоуглеродистые — до 0,25 %.

Микроструктура

В нормализованном состоянии стали бывают:

  • перлитные - характеризуются низким содержанием элементов легирования и имеют после нормализации структуру: перлит, перлит + феррит, перлит + заэвтектоидный карбид;
  • мартенситные - имеют пониженную критическую скорость закалки и достаточно высокое содержание легирующих элементов;
  • аустенитные — повышенное содержание легирующих элементов, под влиянием которых достигается структура: аустенит, аустенит + карбид.

Классификация углеродистых сталей в отожженном состоянии:

  • доэвтектоидная применяется, например, для штампов горячего деформирования;
  • заэвтектоидная имеет структуру, состоящую из перлита и цементита, обычно используется для изготовления инструмента;
  • карбидная (ледебуритная) — например, быстрорежущая сталь ;
  • ферритная — нержавеющая, жароупорная, жаропрочная, высокохромистая стали.

Качество и способ производства

Безусловно, качество стали зависит от присутствия в ней вредных примесей в виде серы и фосфора. В зависимости от этого показателя классификация сталей выглядит так:

  • обычные — серы (S) до 0,06 %, фосфора (P) до 0,07 %;
  • качественные — серы до 0,04 %, а фосфора до 0,035 %;
  • высококачественные — те же показатели уменьшены до 0,025 %;
  • особовысококачественные — менее 0,015 % серы и до 0,025 % фосфора.

Способ изготовления стали предопределяет ее строение, состав и свойства. Так, рядовая сталь (обычная) чаще всего выплавляется в мартене или томасовских и бессемеровских конвертерах, после чего формируется в довольно крупные слитки. Такая сталь имеет повышенное количество неметаллических добавок. Высококачественные стали изготавливают более совершенными методами, например в электропечи, а особовысококачественные дополнительно очищаются от оксидов и сульфидов при помощи ЭШП — электрошлаковой переплавки. Такие стали изготавливаются исключительно легированными.

Раскисление

Также существует классификация сталей в зависимости от степени раскисления, то есть от того, какое количество кислорода было удалено в процессе изготовления. Исходя из этого параметра, стали бывают:

  • кипящие — мало раскисленные, насыщенные кислородом;
  • спокойные — совершенно раскисленные;
  • полуспокойные — стали, в которых кислород удален частично.

Для раскисления малоуглеродистых сталей применяют алюминий, марганец и кремний. Кипящую сталь обычно раскисляют при помощи ферромарганца в полуспокойную, кроме этого, добавляют небольшое количество ферросилиция, а спокойную, кроме предыдущих компонентов, обрабатывают алюминием и силикомарганцем.

Что означает маркировка стали?

Как ни странно, но классификация марок стали довольно разнообразна, и единой мировой системы не существует. В ряде стран, в том числе и в России, принята буквенно-численная маркировка.

Качественные углеродистые стали обозначаются двузначным числом, которое указывает на количественное содержание углерода (в сотых %). Углеродистые стали маркируются литерой "У" и числом, выражающим количество углерода (в десятых %) — У9, У12 и т. д.

Буквы используются также и для обозначения основного элемента легирования, например: "П" - фосфор, "А" — азот, "T" — титан, "Б" — ниобий, "Г" — марганец, "Ю" — алюминий, "Д" — медь, "M" — молибден, "P" — бор, "К" — кобальт, "В" — вольфрам, "E" — селен, "H" — никель, "С" — кремний, "X" — хром, "Ц" — цирконий. Цифра, стоящая за буквой, характеризует количество соответствующего элемента, а та, что находится в самом начале, указывает на содержание углерода (в сотых %). Если количество последнего превышает или равно 1 %, то первоначальная цифра может не указываться вовсе.

Литера "А", стоящая в конце марки, указывает на принадлежность ее к высококачественным. Та же буква, находящаяся в середине, сообщает, что сталь легирована азотом. Если же она стоит вначале, то это говорит о том, что перед вами автоматная сталь, обладающая повышенной обрабатываемостью. Особо высококачественная сталь маркируется буквой "Ш", добавленной в конце и написанной через дефис. Марки, не содержащие букв "А" или "Ш", являются качественными.

Также существуют определенные группы сталей, дополнительно маркирующиеся буквами:

  • "Е" - магнитные;
  • "Э" - электротехнические;
  • "Р" - быстрорежущие;
  • "Ш" - шарикоподшипниковые.

Конечно, существует еще достаточно тонкостей, однако можно сказать, что российская маркировка довольно проста и понятна, в то время как обозначения, принятые в других странах, гораздо сложнее.

Не менее интересна классификация сталей по назначению, поговорим о ней подробнее.

Конструкционные стали

  • Строительные — низколегированные, а также обычного качества, обладающие хорошей свариваемостью.
  • Для холодной штамповки — листовой прокат из низкоуглеродистых марок нормального качества.
  • Цементируемые — малоуглеродистые и некоторые легированные стали, применяемые для изготовления деталей, испытывающих динамические нагрузки и работающих с поверхностным износом.
  • Улучшаемые подвергаются термообработке (закалке и высокому отпуску). Это среднеуглеродистые, хромовые, хромоникелевые, хромоникельмолибденовые, хромокремниемарганцевые, хромистые стали с бором.
  • Высокопрочные — стали, у которых при помощи термообработки и особого состава достигнут двойной предел прочности по сравнению с обычными конструкционными аналогами.
  • Рессорно-пружинные могут длительное время сохранять упругость, достаточное сопротивление усталости и разрушению; к ним относят стали, легированные хромом, бором, кремнием, ванадием и марганцем.
  • Шарикоподшипниковые характеризуются высокой износоустойчивостью, прочностью и выносливостью, что достигается при помощи высокого (до 1 %) содержания углерода и включения хрома.
  • Автоматные применяются для производства массовых деталей, обрабатываемых при помощи станков-автоматов (болты, винты, шайбы, гайки и т. д.); для облегчения обработки в такие стали дополнительно вводится сера, свинец, теллур и селен, что приводит к получению ломкой короткой стружки и снижает трение.
  • Коррозионно-стойкие — высокохромистые стали с содержанием никеля; чем больше в них хрома, тем более выражена стойкость к коррозии, при этом содержание углерода должно быть минимальным.
  • Износостойкие используются в местах абразивного трения, ударов и высокого давления, например ковш экскаватора либо гусеницы трактора.

Инструментальные стали

Классификация сталей инструментального назначения также может быть представлена несколькими пунктами:

  • для режущих инструментов применяются углеродистые, легированные и быстрорежущие стали;
  • для измерительных инструментов материал должен, прежде всего, обладать постоянством размеров, шлифоваться, иметь достаточную твердость и износостойкость; для получения таких характеристик инструментальную сталь часто подвергают закалке и цементизации;
  • штамповые стали должны обладать достаточной износостойкостью, твердостью, теплостойкостью и прокаливаемостью; эту группу также можно дополнительно разделить на стали для холодной, горячей штамповки и валковые стали.

Стали с особенными химическими и физическими свойствами

Кроме всех вышеперечисленных, существуют также марки сталей с особыми свойствами:

  • электротехническая сталь — сплав железа и кремния, иногда легированный алюминием; применяется при производстве магнитопроводов разнообразного электротехнического оборудования;
  • суперинвар — сплав железа, никеля и кобальта, применяемый при изготовлении высокоточного оборудования;
  • жаростойкая — обладает повышенной стойкостью против разрушения при температурах от 900 °C, легируется алюминием, кремнием, никелем;
  • жаропрочная — применяется для изготовления деталей газотурбинных установок, такие стали призваны работать в нагруженном состоянии при высокой температуре в течение некоторого времени.

Сталь является основным металлическим материалом, применяемым в производстве машин, инструментов и приборов. Ее широкое использование объясняется наличием в этом материале целого комплекса ценных технологических, механических и физико-химических свойств. К тому же, сталь имеет относительно невысокую стоимость и может изготавливаться значительными партиями. Процесс производства этого материала постоянно совершенствуется, благодаря чему свойства и качество стали могут обеспечивать безаварийную эксплуатацию современных машин и приборов при высоких рабочих параметрах.

Общие принципы классификации марок сталей

Основные классификационные признаки сталей: химический состав, назначение, качество, степень раскисления, структура.

  • Стали по химическому составу подразделяют на углеродистые и легированные. По массовой доле углерода и первая, и вторая группы сталей делят на: низкоуглеродистые (менее 0,3% С), среднеуглеродистые (концентрация С находится в пределах 0,3-07%), высокоуглеродистые – с концентрацией углерода более 0,7%.

Легированными называются стали, содержащие, помимо постоянных примесей, добавки, вводимые для повышения механических свойств этого материала.

В качестве легирующих добавок используют хром, марганец, никель, кремний, молибден, вольфрам, титан, ванадий и многие другие, а также сочетание этих элементов в различных процентных соотношениях. По количеству добавок стали делят на низколегированные (легирующих элементов менее 5%), среднелегированные (5-10%), высоколегированные (содержат более 10% добавок).

  • По своему назначению стали бывают конструкционными, инструментальными и материалами специального назначения, обладающими особыми свойствами.

Наиболее обширным классом являются конструкционные стали , которые предназначаются для изготовления строительных конструкций, деталей приборов и машин. В свою очередь, конструкционные стали подразделяют на рессорно-пружинные, улучшаемые, цементуемые и высокопрочные.

Инструментальные стали различают в зависимости от назначения произведенного из них инструмента: мерительного, режущего, штампов горячей и холодной деформации.

Стали специального назначения разделяют на несколько групп: коррозионностойкие (или нержавеющие), жаростойкие, жаропрочные, электротехнические.

  • По качеству стали бывают обыкновенного качества, качественными, высококачественными и особо качественными.

Под качеством стали понимают сочетание свойств, обусловленных процессом её изготовления. К таким характеристикам относятся: однородность строения, химического состава, механических свойств, технологичность. Качество стали зависит от содержания в материале газов – кислорода, азота, водорода, а также вредных примесей – фосфора и серы.

  • По степени раскисления и характеру процесса затвердевания стали бывают спокойными, полуспокойными и кипящими.

Раскислением называют операцию удаления из жидкой стали кислорода, который провоцирует хрупкое разрушение материала при горячих деформациях. Спокойные стали раскисляют с помощью кремния, марганца и алюминия.

  • По структуре разделяют стали в отожженном (равновесном) состоянии и нормализованном. Структурные формы сталей – феррит, перлит, цементит, аустенит, мартенсит, ледебурит и другие.

Влияние углерода и легирующих элементов на свойства стали

Стали промышленного производства являются сложными по химическому составу сплавами железа и углерода. Кроме этих основных элементов, а также легирующих компонентов в легированных сталях, материал содержит постоянные и случайные примеси. От процентного содержания этих компонентов и зависят основные характеристики стали.

Как защитить свои постройки от : профилактика, лечение, советы специалистов.Станки для резки и гибки арматуры: Вы узнаете о том, для чего они нужны, как их использовать и насколько они необходимы на строительной площадке.

В нашем прайс-листе Вы можете ознакомиться с актуальной в Санкт-Петербурге и Ленинградской области.

Определяющее влияние на свойства стали оказывает углерод. После отжига структура этого материала состоит из феррита и цементита, содержание которого увеличивается пропорционально росту концентрации углерода. Феррит является малопрочной и пластичной структурой, а цементит – твердой и хрупкой. Поэтому повышение содержания углерода приводит к увеличению твердости и прочности и снижению пластичности и вязкости. Углерод меняет технологические характеристики стали: обрабатываемость давлением и резанием, свариваемость. Увеличение концентрации углерода приводит к ухудшению обрабатываемости резанием из-за упрочнения и снижения теплопроводности. Отделение стружки от стали с высокой прочностью повышает количество выделяемой теплоты, что провоцирует уменьшение стойкости инструмента. Но низкоуглеродистые стали с малой вязкостью также обрабатываются плохо, так как образуется с трудом удаляемая стружка.

Наилучшую обрабатываемость резанием имеют стали с содержанием углерода 0,3-0,4%.

Увеличение концентрации углерода приводит к снижению способности стали к деформации в горячем и холодном состояниях. Для стали, предназначенной для сложной холодной штамповки, количество углерода ограничено 0,1%.

Хорошей свариваемостью обладают низкоуглеродистые стали. Для сварки средне- и высокоуглеродистых сталей используют подогрев, медленное охлаждение и прочие технологические операции, предотвращающие появление холодных и горячих трещин.

Для получения высоких прочностных свойств количество легирующих компонентов должно быть рациональным. Избыток легирования, исключая введение никеля, приводит к снижению запаса вязкости и провокации хрупкого разрушения.

  • Хром – недефицитный легирующий компонент, оказывает позитивное воздействие на механические свойства стали при его содержании до 2%.
  • Никель – наиболее ценная и дефицитная легирующая добавка, вводимая в концентрации 1-5%. Он наиболее эффективно снижает порог хладноломкости и способствует увеличению температурного запаса вязкости.
  • Марганец, как более дешёвый компонент, часто используют в качестве заменителя никеля. Увеличивает предел текучести, но может сделать сталь чувствительной к перегреву.
  • Молибден и вольфрам – дорогие и дефицитные элементы, применяемые для повышения теплостойкости быстрорежущих сталей.

Принципы маркировки сталей по российской системе

На современном рынке металлопродукции не существует общей системы маркировки сталей, что значительно затрудняет торговые операции, приводя к частым ошибкам при заказе.

В России принята буквенно-цифровая система обозначения, в которой буквами маркируют названия элементов, содержащихся в стали, а цифрами – их количество. Буквами также обозначают способ раскисления. Маркировкой «КП» обозначают кипящие стали, «ПС» – полуспокойные, а «СП» – спокойные стали.

  • Стали обыкновенного качества имеют индекс Ст, после которого указывается условный номер марки от 0 до 6. Затем указывают степень раскисления. Впереди ставят номер группы: А – сталь с гарантированными механическими характеристиками, Б – химическим составом, В – обоими свойствами. Как правило, индекс группы А не ставится. Пример обозначения – Б Ст.2 КП.
  • Для обозначения конструкционных качественных углеродистых сталей впереди указывается двухзначное число, обозначающее содержание С сотыми долями процента. В конце – степень раскисления. Например, сталь 08КП. Качественные инструментальные углеродистые стали впереди имеют букву У, а далее – концентрация углерода двухзначным числом в десятых долях процента – например, сталь У8. Высококачественные стали в конце марки имеют букву А.
  • В марках легированных сталей буквами обозначают легирующие элементы: «Н» – никель, «Х» – это хром, «М» – молибден, «Т» – это титан, «В» – вольфрам, «Ю» - алюминий. В конструкционных легированных сталях впереди указывается содержание С в сотых частях процента. В инструментальных легированных сталях углерод маркируется десятыми долями процента, если содержание этого компонента превышает 1,5% – его концентрация не указывается.
  • Быстрорежущие инструментальные стали обозначены индексом Р и указанием содержания вольфрама в процентах, например, Р18.

Маркировка сталей по американской и европейской системам

Собираетесь купить металлопрокат? В нашем разумные цены и качество производителя.

В США существует несколько систем маркировки сталей, разработанных различными организациями по стандартизации. Для нержавеющих сталей, чаще всего, применяют систему AISI, которая действует и в Европе. Согласно AISI, сталь обозначается тремя цифрами, в отдельных случаях после них идут одна или несколько букв. Первая цифра говорит о классе стали, если она – 2 или 3, то это аустенитный класс, если 4 – ферритный или мартенситный. Следующие две цифры обозначают порядковый номер материала в группе. Буквы обозначают:

  • L – низкую массовую доля углерода, менее 0,03%;
  • S – нормальную концентрацию С, менее 0,08%;
  • N – означает, что добавлен азот;
  • LN – низкое содержание углерода сочетается с добавкой азота;
  • F – повышенную концентрацию фосфора и серы;
  • Se – сталь содержит селен, В – кремний, Cu – медь.

В Европе применяется система EN, которая отличается от российской тем, что в ней сначала перечисляются все легирующие элементы, а затем в том же порядке цифрами указывается их массовая доля. Первая цифра – концентрация углерода в сотых долях процента.

Если легированные стали, конструкционные и инструментальные, кроме быстрорежущих, включают более 5% хотя бы одной легирующей добавки, перед содержанием углерода ставят букву «Х».

Страны ЕС применяют маркировку EN, в некоторых случаях параллельно указывая национальную марку, но с пометкой «устаревшая».

Международные аналоги коррозионно-стойких и жаропрочных сталей

Коррозионно-стойкие стали

Европа (EN)

Германия (DIN)

США (AISI)

Япония (JIS)

СНГ (GOST)

1.4000 X6Cr13 410S SUS 410 S 08Х13
1.4006 X12CrN13 410 SUS 410 12Х13
1.4021 X20Cr13 (420) SUS 420 J1 20Х13
1.4028 X30Cr13 (420) SUS 420 J2 30Х13
1.4031 X39Cr13 SUS 420 J2 40Х13
1.4034 X46Cr13 (420) 40Х13
1.4016 X6Cr17 430 SUS 430 12Х17
1.4510 X3CrTi17 439 SUS 430 LX 08Х17Т
1.4301 X5CrNI18-10 304 SUS 304 08Х18Н10
1.4303 X4CrNi18-12 (305) SUS 305 12Х18Н12
1.4306 X2CrNi19-11 304 L SUS 304 L 03Х18Н11
1.4541 X6CrNiTi18-10 321 SUS 321 08Х18Н10Т
1.4571 X6CrNiMoTi17-12-2 316 Ti SUS 316 Ti 10Х17Н13М2Т

Жаропрочные марки стали

Европа (EN)

Германия (DIN)

США (AISI)

Япония (JIS)

СНГ (GOST)

1.4878 X12CrNiTi18-9 321 H 12Х18Н10Т
1.4845 X12CrNi25-21 310 S 20Х23Н18

Марки быстрорежущих сталей

Марка стали

Аналоги в стандартах США

Страны СНГ ГОСТ

Евронормы

Р0 М2 СФ10-МП

Р2 М10 К8-МП

Р6 М5 К5-МП

Р6 М5 Ф3-МП

Р6 М5 Ф4-МП

Р6 М5 Ф3 К8-МП

Р10 М4 Ф3 К10-МП

Р6 М5 Ф3 К9-МП

Р12 М6 Ф5-МП

Р12 Ф4 К5-МП

Р12 Ф5 К5-МП

Конструкционная сталь

Марка стали

Аналоги в стандартах США

Страны СНГ ГОСТ

Евронормы

Базовый сортамент нержавеющих марок стали

СНГ (ГОСТ)

Евронормы (EN)

Германия (DIN)

США (AISI)

03 Х17 Н13 М2

X2 CrNiMo 17-12-2

03 Х17 Н14 М3

X2 CrNiMo 18-4-3

03 Х18 Н10 Т-У

06 ХН28 МДТ

X3 NiCrCuMoTi 27-23

08 Х17 Н13 М2

X5CrNiMo 17-13-3

08 Х17 Н13 М2 Т

Х6 CrNiMoTi 17-12-2

Х6 CrNiTi 18-10

20 Х25 Н20 С2

X56 CrNiSi 25-20

03 Х19 Н13 М3

02 Х18 М2 БТ

02 Х28 Н30 МДБ

X1 NiCrMoCu 31-27-4

03 Х17 Н13 АМ3

X2 CrNiMoN 17-13-3

03 Х22 Н5 АМ2

X2 CrNiMoN 22-5-3

03 Х24 Н13 Г2 С

08 Х16 Н13 М2 Б

X1 CrNiMoNb 17-12-2

08 Х18 Н14 М2 Б

1.4583 Х10 CrNiMoNb

Х10 CrNiMoNb 18-12

X8 СrNiAlTi 20-20

X3 CrnImOn 27-5-2

Х6 CrNiMoNb 17-12-2

Х12 CrMnNiN 18-9-5

Подшипниковая сталь

Рессорно-пружинная сталь

Марка стали

Аналоги в стандартах США

Страны СНГ ГОСТ

Евронормы

Теплоустойчивая сталь

Марка стали

Аналоги в стандартах США

Страны СНГ ГОСТ

Евронормы

GD Star Rating
a WordPress rating system

Маркировка стали по российской, европейской и американской системам , 4.6 из 5 - всего голосов: 63

По химическому составу сталь подразделяют на углеродистую и легированную. Углеродистые стали разделяют по содержанию углерода на:

· малоуглеродистые: менее 0,3 % углерода;

· среднеуглеродистые: 0,3-0,7 % углерода;

· -высокоуглеродистые: более 0,7 % углерода.

Легированные стали разделяют по общему содержанию легирующих элементов на:

· низколегированные: менее 2,5 %;

· среднелегированные: 2,5-10,0 %;

· высокоуглеродистые: более 10,0%.

Классификация стали по способу производства и качеству (содержанию вредных примесей) К вредным примесям в сталях относят серу S и фосфор P.

В зависимости от их содержания стали разделяют на:

· стали обыкновенного качества (рядовые): до 0,06% S, до 0,07% P;

· качественные стали: до 0,04% S, до 0,035% P;

· высококачественные стали: до 0,025% S, до 0,025% P;

· особовысококачественные стали: до 0,015% S, до 0,025% P.

· Сталь обыкновенного качества (или рядовая сталь) выплавляется чаще всего в больших мартеновских печах, конвертерах и разливается в сравнительно крупные слитки Способ изготовления во многом предопределяет состав, строение и свойства этой стали. Стали высококачественные выплавляются преимущественно в электропечах, Классификация стали по назначению

· Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, изно-состойкие стали.

· К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям - их хорошая свариваемость.

· Для холодной штамповки применяют листовой прокат из низкоуглеродистых качественных

· Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки.

· Высокопрочные стали - это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях

· Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости - кремни-ем, марганцем, хромом, вольфрамом, ванадием

· Подшипниковые (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. К подшипниковым предъявляют повышенные требования на отсутствие различных включений, макро- и микропористости. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома


· Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.).

· Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные

· Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.

· Жаропрочные стали способны работать в нагруженном состоянии при высоких температурах в течение определенного времени и при этом обладают достаточной жаростойкостью. Данные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).

· Жаростойкие (окалиностойкие) стали обладают стойкостью против химического разрушения поверхности в газовых средах, в том числе серосодержащих, при температурах +550-1200°С в воздухе, печных газах.

· Инструментальные стали по назначению делят на стали для режущих, измерительных инструментов, штамповые стали.

· Стали для режущих инструментов должны быть способными сохранять высокую твердость и режущую способность продолжительное время, том числе и при нагреве. В качестве сталей для режущих инструментов применяют углеродистые, легированные инструментальные, быстрорежущие стали.

· Штамповые стали обладают высокой твердостью и износостойкостью, прокаливаемостью и теплостойкостью.

Билет 26 Цветные металлы в чистом виде обычно применяются редко, чаще используют различные сплавы. Из числа сплавов цветных металлов в машиностроении наибольшее значение имеют легкие сплавы – алюминия, магния и титана, а также медь и ее сплавы, сплавы на основе никеля, сплавы для подшипников (баббиты), материалы для полупроводников и высокопрочные сплавы на основе тугоплавких металлов.

АЛЮМИНИЙ Для алюминия и его сплавов характерна большая удельная прочность, близкая к значениям для среднелегированных сталей. алюминий и его сплавы хорошо поддаются горячей и холодной деформациям, точечной сварке, а специальные сплавы можно сваривать плавлением и другими видами сварки. Чистый алюминий хорошо сопротивляется коррозии, так как на его поверхности образуется плотная пленка оксидов Al2O3. Добавки железа и кремния повышают прочность алюминия, но снижают пластичность и устойчивость против коррозии. Чистый алюминий применяется для кабелей и электропроводящих деталей, но в основ-ном алюминий используется для изготов-ления сплавов.

МАГНИЙ Малая плотность магния и его сплавов в сочетании с высокой удельной прочностью и рядом физико-химических свойств делает их ценными для применения в различных областях машиностроения: автомобильной, приборостроении, самолетостроении, космической, радиотехнике и других. В горячем состоянии магниевые сплавы хорошо поддаются различным видам обработки давлением – прессованию, ковке, прокатке.

ТИТАН Титан обладает высокими механическими свойствами, высокой удельной прочностью при комнатных и криогенных температурах, а также хорошей коррозионной стойкостью Механические свойства титана сильно зависят от содержания примесей. Так небольшие количества кислорода, азота и углерода повышают твердость и прочность, но при этом значительно уменьшаются пластичность и коррозионная стойкость, ухудшается свариваемость и штампуемость. Особенно вреден водород, который образует по границам зерен тонкие пла-стины гидридов, сильно охрупчивающих металл. Для особо ответственных деталей применяют наиболее чистый титан.

МЕДЬ Наиболее характерными свойствами чистой меди являются высокие значения электропроводности, теплопроводности и стойкость против атмосферной коррозии. В связи с высокой пластичностью чистая медь хорошо деформируется в горячем и холодном состояниях. В процессе холодной деформации медь наклепывается и упрочняется; восстановление пластичности достигается рекристаллизационным отжигом при 500…600ºС в восстановительной атмо-сфере, так как медь легко окисляется при нагреве. Чистая медь применяется для проводников электрического тока, различных теплообменников, водоохлаждаемых изложниц, поддонов, кристаллизаторов. Чистая медь имеет низкую прочность и жидкотекучесть, плохо обрабатывается резанием, поэтому более широкое применение нашли сплавы на ее основе. При сохранении высоких показателей электро- и теплопроводности коррозионной стойкости сплавы меди обладают хорошими механическими, технологическими и антифрикционными свойствами. Для легирования меди в основном применяют цинк, олово, алюминий, бериллий, кремний, марганец и никель. Повышая прочность сплавов, эти легирующие элементы практически не снижают пластичность, цинк, олово, алюминий даже увеличивают ее.

ЛАТУНЬ Латунями называют медноцинковые сплавы. При дополнительном введении в сплав добавок алюминия, свинца, олова, кремния и других элементов получают специальные латуни. Практическое применение находят латуни, содержание цинка в которых не превышает 49%. При более высокой концентрации цинка значительно ухудшается механические свойства сплава.

БРОНЗА Хуй знает че с этой бронзой, обозначается он буквами "Бр" вот и все, что можно объяснить доступным языком, а химические формулы и заумные слова тольео похоронят тебя на экзамене. Вот такие дела удачи)

Билет 35 Пластмассы

Пластмассы - искусственные материалы. Обязательным компонентом является связка. В качестве связки используются: синтетические смолы; эфиры, целлюлоза. Некоторые пластмассы состоят только из одной связки (полиэтилен, фторопласты, органическое стекло). Вторым компонентом является наполнитель (порошкообразные, волокнистые, сетчатые вещества органического или неорганического происхождения). Наполнители повышают механические свойства, снижают усадку при прессовании полуфабриката, придают материалу необходимые свойства. Для повышения эластичности и облегчения обработки в пластмассу добавляют пластификаторы (олеиновая кислота, стеарин, дибутилфторат...). Исходная композиция может содержать: отвердители (амины); катализаторы (перекиси) процесса отвердения; красители. Основой классификации пластмасс служит химический состав полимера: По характеру связующего вещества, различают термопластичные (термопласты) и термореактивные пластмассы. Термопласты получают на основе термопластичных полимеров. Они удобны для переработки (при нагревании пластифицируются), имеют низкую объемную усадку (не более 4%), отличаются большой упругостью, малой хрупкостью. Термореактивные пластмассы после отверждения и перехода в термостабильное состояние отличаются хрупкостью, могут дать усадку до 15%. Поэтому в состав этих пластмасс вводят усиливающие наполнители.

По виду наполнителя, различают пластмассы: порошковые (карболиты) - с наполнителем в виде древесной муки, графита, талька... Волокнистые - с наполнителем из: очесов хлопка и льна (волокниты); стеклянных нитей (стекловолокниты); асбеста (асбоволокниты). Слоистые - с листовым наполнителем: бумажные листы (гетинакс); хлопчатобумажные ткани, стеклоткани, асбестовые ткани (текстолит, стеклотекстолит, асботекстолит). Г азонаполненные - с воздушным наполнителем (пенопласты, поропласты). Особенностями пластмасс являются: малая плотность; низкая теплопроводность; большое тепловое расширение; хорошие электроизоляционные свойства; высокая химическая стойкость; хорошие технологические свойства

Билет 27 Паянием называют процесс, жесткого соединения металлических деталей путем расплавления присадочного материала припоя, имеющего температуру плавления более низкую, чем температура плавления основного металла. Соединение с помощью припоя основано на взаимном растворении и диффузии основного металла и припоя. Такой процесс протекает наиболее благоприятно, если основной металл и припой имеют химическое и физическое сродство. Прочность соединения припоем зависит от величины поверхностей, соединяемых пайкой, чистоты этих поверхностей, зазора между дета-лями, структуры образовавшегося паечного шва, а затем и устойчивости к коррозии основного сплава и припоя.Уменьшение линейных размеров изделия особенно заметно при соединении нескольких деталей, когда суммарная усадка припоя в паечных швах может достигать размеров, при которых конструкция оказывается заметно укороченной и часто непригодной. Поверхность металлов, соединяемых пайкой, необходимо тщательно очистить от окислов и загрязнений, препятствующих процессу диффузии и растворению металлов. Флюс . Он защищает спаиваемые поверхности и очищает их от окислов, препятствующих диффузии припоя в основной металл. Спаиваемый металл с припоем может давать,различные виды соединений: твердый раствор, химическое соединение, механическая смесь. Лучшим видом спайки является такая, при которой формируется структура припоя типа твердого раствора. Она происходит между металлами, обладающими наибольшим физико-химическим сродством. Примером может быть паяние меди латунью, золота- золотыми припоями. Структуры типа химического соединения (паяние меди оловом) и механической смеси (паяние стали золотом) не обеспечивают высокой прочности и антикоррозийной устойчивости.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПЙКИ

1) Подготовка поверхности (очистка от жиров и прочей хуетни)

2)Выравнивание (подгонка по поверхности)

3)Защита места пайки флюсом.

4) Лужение (покрытие тонким слоем частей спаиваемых)

5) Прогревание до плавления

6) Фиксация

7) Охлаждение

8) Очистка пайного шва от излишковприпоя флюса и др.

Твердая плавка(медь железо) очень близки к латунным Для пайки твердого припоя с температурой плавления 1000градусов используют гранники (пояльники с открытым пламенем) Флюсы применяют на основе борной кислоты и ее соли

Билет 28 28 . Мартеновский способ производства стали

Мартеновское производство возникло в 1864 г., когда П.Мартен построил первую регенеративную (использующую теплоту отходящих газов) печь, давшую годную литую сталь из твердой шихты. В России первая мартеновская печь была построена в 1869 г. А.А.Износковым на Сормовском заводе. Вплоть до 90-х годов мартеновские печи использовались для производства стали лишь с завалкой твердой шихты и работали по так называемому скрап-процессу. Разработка технологии рудного процесса на жидком чугуне была осуществлена в Украине братьями А.М. и Ю.М.Горяиновыми; они же внедрили плавку по этой технологии в 1894 г. на Александровском заводе в Екатеринославле (ныне Днепропетровский завод им. Г. И. Петровского). В мартеновской печи осуществляется передел загруженной в нее шихты: твердого или жидкого чугуна, стального и чугунного лома с использованием железной руды, окалины, кислорода, флюсов и ферросплавов - в сталь заданного состава, при этом получается побочный продукт плавки - мартеновский шлак. Мартеновская печь

Верхняя часть мартеновской печи (рис. 1) состоит из рабочего пространства (ограниченного ванной4, передней стеной 9, задней стеной 8, сводом 5) и головок, расположенных с обоих концов рабочего пространства. В передней стене находятся загрузочные окна 6, через которые с рабочей площадки загружается шихта, берутся пробы и ведется наблюдение за плавкой. Подина печи имеет наклон к задней стене, в которой находится отверстие для выпуска готовой стали, разделываемое перед выпуском. Через каналы 1, 2, 3 и 7 головок подается газ (топливо) и окислительное дутье и отводятся продукты горения. Нижняя часть печи состоит из двух пар шлаковиков, двух пар регенераторов, подземных каналов с перекидными клапанами и дымового борова, соединенного с дымовой трубой или котлом - утилизатором. Шлаковики и регенераторы расположены попарно и симметрично по обе стороны печи. Сечение через воздушный шлаковик 11 и газовый шлаковик 10 сделано в одной плоскости с сечением рабочего пространства, а сечение через воздушный регенератор 12 и газовый регенератор 13 - в другой плоскости: шлаковики находятся под головками, а регенераторы под рабочей площадкой. Регенераторы служат для нагрева воздуха и горючего газа, поступающих в рабочее пространство при температуре 1000-1150°. Необходимость нагрева вызвана тем, что в рабочем пространстве должна быть обеспечена температура до 1700° и более, если же предварительного нагрева дутья и газа не производить, то температура в печи будет недостаточна для нагрева и последующего плавления мягкой стали. Камеры регенераторов заполнены насадкой в виде решетчатой кладки из огнеупорного кирпича. Регенераторы работают попарно и попеременно: в то время как одна пара нагревает дутье и газ, другая аккумулирует (запасает) теплоту отходящих продуктов горения; по охлаждении регенераторов до нижнего предела либо по достижении верхнего предела нагрева регенераторов, аккумулирующих теплоту, происходит перемена направления движения газов посредством перекидки клапанов. Шлаковики расположены между головками и регенераторами; они служат для собирания пыли и капель шлака, которые выносятся продуктами горения. Для нагрева мартеновских печей, работающих на машиностроительных заводах, применяется также жидкое топливо (мазут). Мазут в рабочее пространство вводится с помощью форсунки и распыляется струей воздуха или пара под давлением 5-8ати. Печи, работающие на мазуте, оборудуются только двумя регенераторами (и соответственно двумя шлаковиками) для подогрева окислительного дутья по одному с каждой стороны. Мартеновские процессы и печи разделяют на основные и кислые в зависимости от характера процесса и, соответственно, материала футеровки подины и стен. Плавка стали на шихте, содержащей фосфор и серу в количестве, превышающем допустимое в готовой стали, производится основным процессом, т.е. под основным шлаком и в печах с основной футеровкой. Ванна основных печей футеруется обожженным доломитом или магнезитом. Для кладки свода рабочего пространства, головок и стен шлаковиков применяют магнезитохромитовый кирпич, имеющий высокую стойкость. В небольших печах, а также при отсутствии магнезитохромитового кирпича, свод печей делается из динасового кирпича. Для плавки стали под кислым шлаком применяются кислые печи с футеровкой из динасового кирпича и кварцевого песка. Помимо стационарных мартеновских печей, применяются также качающиеся мартеновские печи. Верхняя часть качающейся печи опирается на систему роликов. Между торцовыми стенками рабочего пространства и головками имеются небольшие щели, обеспечивающие возможность поворота корпуса печи. Посредством поворотного механизма осуществляется наклон до 15° в сторону рабочей площадки для скачивания шлака, или на 30-33° в сторону выпускного отверстия для выпуска стали. Продолжительность службы мартеновской печи (ее кампания) определяется числом плавок, выдерживаемых сводом рабочего пространства; она составляет обычно для печей с динасовым сводом 250- 300 плавок (при большой емкости) или 400-500 плавок (при малой и средней емкости), а для печей с хромомагнезитовым сводом 700 и более плавок. В мартеновских печах выплавляют углеродистую конструкционную сталь, а также легированную сталь различных марок.

Сталь. Виды и марки стали. Их применение.

Сталь - это сплав железа и углерода с другими элементами, содержание углерода в нём не более 2,14%.

Наиболее общая характеристика - по химическому составу сталь различают:

    углеродистую сталь (Fe – железо, C – углерод, Mn – марганец, Si - кремний, S – сера, P – фосфор). По содержанию углерода делится на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую. Углеродистая сталь предназначена для статически нагруженного инструмента.

По способу производства и содержанию примесей сталь различается:

        сталь обыкновенного качества (углерода менее 0,6%) - соответствует ГОСТ 14637, ГОСТ 380-94. Ст0, Ст1, Ст2, Ст3, Ст4, Ст5,Ст6. Буквы «Ст» обозначают сталь обыкновенного качества, цифры указывают на номер маркировки в зависимости от механических свойств. Является наиболее дешёвой сталью, но уступает по другим качествам.

        качественная сталь (углеродистая или легированная) - ГОСТ 1577, содержание углерода обозначается в сотых долях % - 08, 10, 25, 40, дополнительно может указываться степень раскисления и характер затвердевания. Качественная углеродистая сталь обладает высокой пластичностью и повышенной свариваемостью.

        Низкоуглеродистые качественные конструкционные стали характеризуются невысокой прочностью и высокой пластичностью. Из листового проката стали 08, 10, 08кп изготавливают детали для холодной штамповки. Из сталей 15, 20 делают болты, винты, гайки, оси, крюки,шпильки и другие детали неответственного назначения.

Среднеуглеродистые качественные стали (ст 30, 35, 40, 45, 50, 55) используют после нормализации и поверхностной закалки для изготовления таких деталей, которые обладают высокой прочностью и вязкостью сердцевины (оси, винты, втулки и т. д.)

Стали 60 - стали 85 обладают высокой прочностью, износостойкостью, упругими свойствами. Из них изготавливают крановые колёса, прокатные валки, клапаны компрессоров, пружины, рессоры и т.д.

        высококачественная - сложный химический состав с пониженным содержанием фосфора и серы - по ГОСТу 19281.

Также сталь делится по применению :

а) строительная сталь - углеродистая обыкновенного качества. Обладает отличной свариваемостью. Цифра обозначает условный номер состава стали по ГОСТу. Чем больше условный номер, тем больше содержание углерода, тем выше прочность стали и ниже пластичность.

Ст0-3 - для вторичных элементов конструкций и неответственных деталей (настилы, перила, подкладка,шайбы)

Ст3 используют для несущих и ненесущих элементов сварных и несварных конструкций и деталей, которые работают при положительных температурах. ГОСТ 380-88.

Стандартом качества предусмотрена сталь с повышенным количеством марганца (Ст3Гсп/пс, ст5Гсп/пс).

б) конструкционная сталь - ГОСТ 1050

Углеродистые качественные конструкционные стали используются в машиностроении, для сварных, болтовых конструкций, для кровельных работ, для изготовления рельсов, железнодорожных колёс, валов, шестерен и других деталей грузоподъёмников.Ц ифры в маркировке означают содержание углерода в десятых долях процента.

Ст20 - малонагруженные детали, такие как валики, копиры, упоры,

Ст35 - испытывающие небольшие напряжения (оси, тяги, рычаги, диски, траверсы, валы),

Ст45 (ст40Х) - требующие повышенной прочности (валы, муфты, оси, зубчатые рейки)

Конструкционные легированные стали используют для гусениц тракторов, изготовления пружин, рессор, осей, валов, автомобильных деталей, деталей турбин и др.

в) инструментальная сталь - применяется для режущего инструмента, быстрорежущая сталь для холодного и горячего деформирования материла, для измерительных инструментов, на производство молотков, долот, стамесок, резцов, свёрлов, напильников, бритв, рашпилей.

У7, У8А (цифра- десятые доли процента по содержанию углерода). Углеродистые стали выпускают качественными и высококачественными. Буква «А» означает высококачественную углеродистую инструментальную сталь.

г) легированная сталь - универсальная сталь, содержащая специальную примесь. Содержание кремния более 0,5%, марганца более 1%. ГОСТ 19281-89. Если содержание легирующего элемента превышает 1 - 1,5%, то оно указывается цифрой после соответствующей буквы.

    низколегированная сталь - где легирующих элементов до 2,5% (09Г2С, 10ХСНД, 18ХГТ). Низколегированную сталь можно использовать в условиях крайнего севера, от -70 град С. Низколегированную сталь отличает большая прочность за счёт более высокого предела текучести,что важно для ответственных конструкций.

    среднелегированная (2,5 -10%),

    высоколегированная (от 10 до 50%)

Сталь 09Г2С применяется для паровых котлов, аппаратов и ёмкостей, работающих под давлением и температурой от минус 70, до плюс 450град; её используют для ответственных листовых сварных конструкций в химическом и нефтяном машиностроении, судостроении.

Сталь 10ХСНД используют для сварных конструкций химического машиностроения, фасонных профилей в сдостроении, вагоностроении.

18ХГТ применяют для деталей, работающих на больших скоростях при высоком давлении и ударных нагрузках.

д) сталь особого назначения - сталь с особыми физическими свойствами. Она применяется в электротехничсеской промышленности и точном судостроении.

На свариваемость стали влияет степень её раскисления. По степени раскисления сталь классифицируется:

    спокойная сталь (ст3сп) - полностью раскисляется с минимальным содержанием шлаком и неметаллических примесей,

    полуспокойная сталь (ст3пс) - по характеристикам качества схожа со спокойной сталью,

    кипящая сталь (08кп) - неокисленная сталь с высоким содержанием неметаллических примесей. ГОСТ 1577.

В зависимости от нормируемых характеристик , сталь подразделяют на категории: 1, 2, 3, 4, 5. Категории обозначают химический состав, механические свойства при растяжении, ударную вязкость)

Марки стали

Марка стали С245 - Ст3пс5

Марка стали С255 - Ст3сп5

Марка стали С235 - Ст3кп2

Марка стали С345 - 09Г2С



Сталь представляет собой ковкий и деформируемый сплав железа и углерода (в качестве постоянной примеси). Также содержит другие легирующие элементы и другие вредные примеси. Содержание углерода при этом не должно превышать 2,14%. Изменяя химический состав этого сплава с помощью концентрации углерода и добавляя легирующие элементы, можно получать широкий спектр различных марок этого металла, которые будут обладать различными свойствами. Именно это и позволяет использовать этот материал в большинстве отраслей промышленности.

Принципы классификации стали

Классификация и маркировка стали происходит по следующим параметрам:

По химическому составу

В зависимости от химического состава этот металл разделяют на два типа: углеродистые и легированные. В свою очередь, углеродистые делят на:

  • низкоуглеродистые (содержание углерода ниже 0,2%);
  • среднеуглеродистые (содержание углерода в пределах 0,2% - 0,45%);
  • высокоуглеродистые (содержание углерода выше 0,5%).

Легированные стали классифицируют по общему суммарному количеству легирующих элементов (при этом содержание углерода не суммируют, марганец начинает считаться легирующим элементом при его содержании в сплаве более 1%, кремний - более 0,8%). Различают такие:

  • низколегированные (ниже 2,5%);
  • среднелегированные (в пределах 2,5% - 10%);
  • высоколегированные (более 10%).

По структуре

Такой классификационный признак, как структура материала считается менее устойчивым, так как имеет зависимость от скорости охлаждения, легирования, способа термообработки и некоторых других непостоянных факторов. Однако структура у готового материала все же позволяет провести объективную оценку его качества. Классификацию стали по структуре в состояниях отжига и нормализации. В состоянии отжига различают такие:

После процесса нормализации стали разделяют на такие классы:

  • перлитные - содержат низкое количество элементов легирования, структура после нормализации: перлит, перлит + феррит, перлит + заэвтектоидный карбид;
  • мартенситные - содержат высокое количество легирующих элементов, а также относительно низкую критическую скорость закалки;
  • аустенитные - отличаются повышенным содержанием легирующих элементов, структура: аустенит, аустенит + карбид.

По назначению

По такому признаку, как назначение стали разделяются на конструкционные, инструментальные и специального назначения (имеющие специальные свойства).

Конструкционные используются для изготовления всевозможных деталей в устройствах, в машинах, элементах строительных конструкций. Между собой делятся на:

  • обыкновенного качества;
  • улучшаемые;
  • цементируемые;
  • автоматные;
  • высокопрочные;
  • рессорно-пружинные.

Инструментальные используются для изготовления режущих, измерительных и других инструментов. Подразделяются на такие группы:

  • для изготовления режущего инструмента;
  • для изготовления измерительного инструмента;
  • для изготовления штампово-прессовой оснастки.

Специального назначения - это сплавы имеющие особые физические и/или механические свойства. Различают:

По качеству и способу производства

В этом случаи под качеством понимают всю совокупность свойств металла, которые определяются металлургическим процессом его изготовления. Качество стали определяется присутствием в ней вредных примесей. В первую очередь - это химические элементы сера и фосфор. В зависимости от их содержание разделяют на:

  • обыкновенного качества - содержащие до 0,06% серы и 0,07% фосфора;
  • качественные - до 0,035% серы и 0,035% фосфора;
  • высококачественные - не более 0,025% серы и 0,025% фосфора.
  • особо высококачественные - не более 0,015% серы и 0,025% фосфора.

По степени раскисления

Раскислением называется процесс удаления кислорода из жидкого сплава. Нераскисленная сталь имеет относительно малую пластичность и сильнее подвержена хрупкому разрушению при термической обработке давлением. По степени раскисления разделяют на:

  • спокойные;
  • полуспокойные;
  • кипящие.

Процесс раскисления спокойных сталей в плавильной печи/или ковше с помощью марганца, алюминия и кремния. Затвердевание в изложнице происходит спокойно, без газовыделения. В верхней части слитков образуется усадочная раковина. Данный тип обладает анизотропией, то есть механические свойства различны и зависят от направления - пластические свойства в поперечном направлении (по направлению прокатки) значительно ниже, чем в продольном направлении. Кроме того, в верхней части слитка содержание серы, фосфора и углерода повышенное, а в нижней части - пониженное. Это значительно ухудшает свойства изделия, иногда даже до отбраковки.

Раскисление в кипящих происходит только за счет марганца. Избыточное количество кислорода при затвердевании частично реагирует с углеродом, выделяясь в виде газовых пузырей (окись углерода). Отсюда и создается впечатление «кипения». В этом типе практически отсутствуют неметаллические включения, возникающие из продуктов раскисления. Является низкоуглеродистым сплавом, с минимальным содержанием кремния и большим содержанием газообразных примесей. Используется при изготовлении деталей кузовов автомобилей и т. п. Обладает хорошей штампуемостью в холодном состоянии.

Полуспокойные стали занимают срединное положение между спокойными и кипящими сталями. Раскисление производят в два этапа: частично в плавильной печи и ковше, заключительно - в изложнице. В изложнице раскисление происходит засчет углерода, который содержится в металле.

Расшифровка сталей в материаловедении

Принадлежит к классу: конструкционные углеродистые качественные. Химический состав: углерод - 0,17−0,24%; кремний - 0,17−0,37%; марганец - 0,35−0,65%; сера - до 0,04%; фосфор - до 0,04%. Широко применяется в котлостроении, для труб и нагревательных трубопроводов различного назначения, кроме того, промышленность выпускает пруток, лист.

ХВГ расшифровка

Принадлежит к классу: инструментальные легированные. Применяется для изготовления измерительного и режущего инструмента, метчиков, протяжек.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Презентация на тему: Невербальные средства общения Презентация на тему: Невербальные средства общения Турагент: бесплатные путешествия или нервная работа? Турагент: бесплатные путешествия или нервная работа? Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений