Что такое базовый предел выносливости. Определение величины предела выносливости

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Основным параметром, характеризующим усталостную прочность материалов, т.е. прочность при повторяемых знакопеременных нагрузках, является предел выносливости у R - то максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение материала до базового числа N у циклов нагружения. За базовое, т.е. наибольшее число циклов из задаваемых при испытаниях принимают для черных металлов 10 7 циклов нагружения, а для цветных - 10 8 . Индекс в обозначении предела выносливости соответствует коэффициенту асимметрии цикла напряжений при испытаниях. Так, для симметричного цикла предел выносливости обозначается у- 1 , а для отнулевого - у 0 . Предел выносливости материала определяется путем испытания образцов на усталость на испытательных машинах. Наиболее распространенным является испытание образцов при симметричном цикле напряжений. Схема установки для испытания образцов на изгиб показана на рис. 5. Образец 1 вместе с зажимом 2 вращается с постоянной угловой скоростью. На конце образца расположен подшипник 3, нагруженный силой F постоянного направления. Образец подвергается деформации изгиба с симметричным циклом. Максимальные напряжения возникают на поверхности образца в наиболее опасном сечении I - I и определяются как у = М и /W, где М и = F?? - изгибающий момент в сечении; W = 0,1d 3 - момент сопротивления относительно нейтральной оси поперечного сечения образца, круга диаметром d . В представленном положении в точке А действуют растягивающие напряжения, так как образец изгибается выпуклостью вверх. После поворота образца на 180° в точке А будут действовать такие же по величине напряжения сжатия, т.е. -у. При переходе через нейтральную ось напряжение в точке А будет равно нулю.

Путем испытаний до усталостного разрушения одинаковых образцов при разных значениях напряжений цикла строят график, характеризующий зависимость между максимальными напряжениями у и числом циклов до разрушения (циклической долговечностью N). Эта зависимость (рис. 6) называется кривой усталости или кривой Веллера , в честь немецкого ученого, впервые ее построившую. Для построения кривой усталости в координатах у max - N требуется не менее 10 одинаковых образцов, к которым предъявляются жесткие требования по точности размеров, шероховатости поверхности. Первый из образцов нагружают силой F так, чтобы максимальное напряжение цикла у 1 было несколько меньше предела прочности материала (у 1 < у u) и испытывают до разрушения, отмечая (рис. 6) точку А с координатами у 1 и числом циклов до разрушения N 1 .

Второй образец испытывают, создавая в нем напряжение у 2 меньшее, чем в первом (у 2 < у 1) образце. Число циклов до разрушения этого образца будет N 2 (N 2 > N 1). На графике отмечают точку В с координатами у 2 , N 2 . Снижая постепенно в испытываемых образцах максимальное напряжение цикла, испытания проводят до разрушения образцов, пока один из них не разрушится до базового числа N у циклов нагружения. Соединив последовательно плавной линией точки А , В , С , …, построенные при испытаниях образцов, получим кривую усталости. Напряжение, соответствующее базовому числу N у циклов, и есть предел выносливости у - 1 материала при изгибе. На других испытательных машинах аналогично испытанию на изгиб определяют пределы выносливости материала при кручении (ф- 1), при растяжении - сжатии (у- 1р). Экспериментально установлены для многих материалов соотношения между пределами выносливости при изгибе, кручении и растяжении - сжатии. Например, для сталей ф- 1 = 0,55у- 1 ; у- 1р = 0,7у- 1 . Предел выносливости при симметричном цикле нагружения у всех металлов, кроме очень пластичных (медь, техническое железо), меньше предела упругости, с ростом частоты нагружения он незначительно увеличивается.

В литературе предлагаются десятки уравнений, описывающих кривые усталости разных материалов, образцов. В инженерных расчетах чаще всего используют степенное уравнение кривой усталости

у m N = const, (10)

где N - число циклов до разрушения при максимальном напряжении у цикла; m - показатель степени, зависящий от материала, параметров образца, для металлов m = 5 … 10.

Часто срок работы изделий, особенно специального одноразового использования, ограничен, числом циклов нагружения N за время работы меньше базового (N < N у). Уравнение (10)позволяет при расчетах таких изделий на усталостную прочность определять предельно максимальные напряжения в циклах или ограниченный предел выносливости у - 1N , соответствующий заданному числу циклов N нагружения

N = N у (у- 1 /у- 1N) m , (12)

где величины у - 1 , N у , m берут из справочных данных по материалам. Использование уравнений (11) и (12) возможно только при сохранении неизменными физики и механизма усталостного повреждения при сохранении механизма многоцикловой усталости . Многоцикловая усталость гарантировано имеет место, если число циклов до разрушения не менее 10 4 , т.е. N ? 10 4 .

Определение характеристик усталостной прочности материалов путем испытаний на усталость трудоемкий и дорогостоящий процесс из-за длительности и значительного разброса результатов испытаний. Ищут эмпирические зависимости приближенной оценки значений предела выносливости от величины механических свойств материала при статическом нагружении. Так, величина предела выносливости при изгибе с симметричным циклом нагружения для углеродистой стали у- 1 = (0,4 … 0,45)у ut ; для цветных металлов у- 1 = = (0,24 … 0,5)у ut , где у ut - предел прочности материала при растяжении.

Многочисленные эксперименты, проведенные с образцами различных форм и размеров, а также практика эксплуатации деталей машин показывают, что прочность при переменных напряжениях (величина предела выносливости) в значительной степени зависит от формы и размеров детали, а также от состояния ее поверхности и воздействия окружающей среды.

В большинстве случаев испытания на выносливость проводят на лабораторных образцах диаметром 5-10 мм, имеющих в пределах рабочей части строго цилиндрическую форму; поверхность образцов имеет высокую чистоту. Величину предела выносливости, полученную в результате испытания таких (нормальных) образцов, будем считать одной из механических характеристик материала. Если подвергнуть испытанию на выносливость серию специальных образцов, подобных какой-либо конкретной детали, т. е. отличающихся от нормальных образцов наличием концентратов напряжений, абсолютными размерами, качеством обработки поверхности (или только некоторыми из перечисленных факторов), то, как правило, при одном и том же материале нормальных и спешильных образцов предел выносливости, определенный при испытании последних, ниже.

Таким образом, установлено, что пределы выносливости конкретной детали и материала, из которого она изготовлена, различны. Влияние факторов, от которых зависит соотношение между пределами выносливости материала (нормального образца) и детали, более или менее полно изучено лишь для симметричного цикла изменения напряжений. Поэтому примем, что величины различных факторов, влияющих на пределы выносливости, определены при испытаниях в условиях симметричных циклов изменения напряжении.

Кратко рассмотрим влияние на величину предела выносливости концентрации напряжений, абсолютных размеров и состояния поверхности деталей. При этом числовые значения коэффициентов, отражающих влияние перечисленных факторов, не приводим, они имеются в специальной литературе.

Концентрация напряжений. Снижение предела выносливости за счет наличия тех или иных концентраторов напряжений (выточек, отверстий, шпоночных канавок, прессовых посадок и т. д.) учитывается эффективным, или действительным, коэффициентом концентрации напряжений, обозначаемым - для нормальных и - для касательных напряжений.

Эффективный коэффициент концентрации напряжений представляет собой отношение предела выносливости образца без концентрации напряжений к пределу выносливости образца (или детали) тех же размеров, но с концентратором напряжений:

В отличие от теоретического коэффициента концентрации, зависящего только от формы (геометрии) детали, эффективный коэффициент концентрации зависит также и от свойств материала детали: чем менее пластичен материал, тем он чувствительнее к концентрации напряжений. Эффективные коэффициенты концентрации устанавливают опытным путем, но в некоторых случаях при отсутствии экспериментальных данных их вычисляют по известным значениям теоретических коэффициентов концентрации (ссна и ) по формулам

Здесь q - так называемый коэффициент чувствительности материала к концентрации напряжений. Величина q возрастает с повышением предела прочности материала, но не может быть больше единицы (в этом предельном случае теоретический и действительный коэффициенты концентрации равны между собой).

Для деталей из серого чугуна т. е. можно считать, что чугун практически нечувствителен к концентрации напряжений.

При неответственных расчетах и отсутствии данных о величинах действительных и теоретических коэффициентов концентрации величину можно определить приближенно по следующим эмпирическим соотношениям:

а) при отсутствии острых концентраторов напряжений для деталей с чисто обработанной поверхностью

б) при наличии острых концентраторов напряжений

В приведенных соотношениях величины выражены в при их использовании не следует отдельно учитывать влияние качества поверхности детали.

Снижение концентрации напряжений, повышающее экономичность конструкций, достигается различными конструктивными мероприятиями (например, путем увеличения радиусов переходных галтелей в местах ступенчатого изменения размеров поперечного сечения), и термохимической обработкой (например, азотированием) зон концентрации.

Влияние абсолютных размеров детали. Снижение предела выносливости с ростом абсолютных размеров детали носит название масштабного эффекта. Влияние размеров детали учитывается масштабным фактором (или масштабным коэффициентом) представляющим собой отношение предела выносливости, определенного при испытаниях образцов диаметром к пределу выносливости, определенному при испытании геометрически подобных образцов (или деталей) больших размеров, т. е.

Величина масштабного фактора зависит от материала детали (более прочные стали чувствительнее к масштабному эффекту), со размеров, вида деформации (как правило, при одинаковой форме размерах детали ), наличия концентраторов напряжений

Влияние состояния поверхности детали. Усталостные трещины, как правило, начинаются от поверхности детали. Поэтому состояние поверхностного слоя оказывает существенное влияние на прочность при переменных напряжениях.

Риски от механической обработки, повреждения поверхности и т. п. играют роль концентраторов напряжений и могут вызвать весьма значительное снижение предела выносливости. Особенно неблагоприятное влияние оказывает коррозия поверхности.

Влияние состояния и качества поверхности детали на величину предела выносливости учитывают коэффициентом качества поверхности (коэффициентом поверхностной чувствительности), обозначаемым Этот коэффициент представляет собой отношение предела выносливости, определенного при испытаниях образцов с полированной поверхностью, к пределу выносливости, определенному при испытаниях таких же (по форме, размерам и материалу) образцов с заданным состоянием поверхности, т. е.

Для расчетов на прочность при повторно – переменных напряжениях требуется знание механических характеристик материала. Их определяют испытанием на сопротивление усталости серии стандартных тщательно отполированных образцов на специальных машинах. Наиболее простым является испытание на изгиб при симметрическом цикле напряжений.

Задавая образцам различные значения напряжений , определяют число циклов N , при котором произошло их разрушение. По полученным данным строят кривую - N , называемую кривой усталости. Если данную кривую построить в логарифмических координатах, то приобретает вид прямой (рис.6). Как видно из рис.6,а при малых напряжениях образец, не разрушаясь, может выдержать очень большое число циклов нагружения.

Рис.6

Впервые натурные испытания осей железнодорожных вагонов были проведены с 1857 года по 1870 год Августом Вёлером на изгиб, кручение и осевое нагружение. Кривая выносливости Вёлера показанная на рис.7 присуща для деталей из сплавов цветных металлов. Постоянство показателя кривой выносливости сохраняется вплоть до очень малого уровня напряжения. Поэтому введено понятие условный предел выносливости и базовое число циклов.

Рис.7. Кривая выносливости Вёлера

Условным пределом выносливости или пределом ограниченной выносливости называется наибольшее максимальное напряжение, при котором не происходит разрушение, когда осуществляется определенное число циклов, принятое за базу - .

В логарифмических координатах уравнение соответствует прямой линии с показателем кривой выносливости для гладких образцов при симметричном цикле.

Для конструкционной и легированной стали предел выносливости находится в точке пересечения левой и правой ветви выносливости (рис.6, а ). При этом предполагалось, что переменные напряжения меньше ограниченного предела выносливости не оказывают влияние. Поэтому правая ветвь выносливости параллельна к оси абсцисс. Однако согласно ГОСТ 21354-87 на контактную выносливость оказывает влияние напряжение больше , а на изгибную прочность - напряжения больше . Следовательно, правая ветвь не горизонтальна, а имеет некоторый наклон.

Вообще допущение о горизонтальности правой ветви выносливости противоречит физической сущности явления усталости, если рассматривать усталость как результат потерь на гистерезис при нагружении и разгрузке детали переменного режима работы. Оно также не согласуется с дислокационной теорией разрушения Тейлора, Оравана и Полани, которая подтверждает процесс постепенного искажения кристаллической решетки и структуры вследствие движения дислокаций и скопления вакансий под действием внутренних напряжений, в результате происходит образование очагов микротрещины даже в идеальных условиях.

Если учесть то обстоятельство, что фокусом трещинообразования по данным МГТУ им. Н.Э. Баумана могут быть микронеровности поверхности при R Z >1мкм или внутренние волосовины длиной l >20 мкм, то на длительную выносливость оказывает влияние напряжение меньше предела выносливости.

Из обобщенных диаграмм наиболее распространены диаграмма Смита (рис.6, б ) где рассмотрены пределы выносливости при изгибе, растяжении-сжатии и кручении для коэффициента асимметрии , характеристики цикла , коэффициента амплитуды . Располагая диаграммами Смита для различных материалов и видов нагружения, можно производить расчет на усталость при любом значении коэффициента асимметрии цикла.

Для образцов и деталей при коэффициенте асимметрии пределы выносливости для нормальных напряжении обозначают и , а при кручении по симметричному циклу и . Соответственно для отнулеванного цикла ; и ; .

При отсутствии табличных экспериментальных данных по ГОСТ 25.504-82 принимают следующие соотношения:

; ;

;

где - математическое ожидание предела прочности из 14 образцов по 14 плавкам. Так, для углеродистой стали:

; ; .

Предел выносливости обозначается (или ), где индекс R соответствует коэффициенту асимметрии цикла. Так, например, для симметричного цикла он обозначается , для отнулевого цикла (при ), для постоянного цикла .

Предел выносливости при симметричном цикле является наименьшим по сравнению с другими видами циклов, то есть .

Так, например, ; .

предел ограниченной выносливости

Для расчета деталей, не предназначенных к длительной эксплуатации, возникает необходимость в определении наибольшего значения напряжения, которое может выдержать материал при заданном числе циклов (N), значение которого меньше, чем базовое (). В этом случае по кривой усталости и заданному числу циклов (N) определяется соответствующее напряжение (), называемое пределом ограниченной выносливости .

Факторы предела выносливости при симметричном цикле

При оценке прочности детали, работающей в условиях статического нагружения, механические характеристики материала детали полностью отождествляются с механическими характеристиками материала образца, полученными в результате эксперимента. При этом не учитывается разница ни в форме, ни в размерах детали и образца, ни некоторые другие отличия.

При расчете детали на усталость необходимо учитывать упомянутые факторы. К наиболее существенным факторам, которые влияют на предел выносливости при симметричном цикле, относятся концентрация напряжений, абсолютные размеры поперечного сечения детали и шероховатость ее поверхности. Это легко объясняется тем, что все упомянутые факторы способствуют возникновению и распространению микротрещин.

Влияние концентрации напряжений

Вблизи выточек, у краев отверстий, в местах изменения формы стержня, у надрезов и т.п. наблюдается резкое увеличение напряжений по сравнению с номинальными напряжениями, вычисленными по обычным формулам сопротивления материалов. Такое явление называется концентрацией напряжений , а причина, вызывающая значительный рост напряжений – концентратором напряжений .

Зона распространения повышенных напряжений носит чисто местный характер, поэтому эти напряжения часто называют местными.

При напряжениях, переменных во времени, наличие концентратора напряжений на образце приводит к снижению предела выносливости. Это объясняется тем, что многократное изменение напряжений в зоне очага концентрации напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением образца.

Для того чтобы оценить влияние концентрации напряжений на снижение сопротивления усталости образца с учетом чувствительности материала к концентрации напряжений, вводят понятие эффективного коэффициента концентрации, который представляет собой отношение предела выносливости стандартного образца без концентрации напряжений к пределу выносливости образца с концентрацией напряжений: (или ).

Влияние абсолютных размеров поперечного сечения

С увеличением размеров поперечных сечений образцов происходит уменьшение предела выносливости . Это влияние учитывается коэффициентом влияния абсолютных размеров поперечного сечения (ранее этот коэффициент назывался масштабным фактором). Упомянутый коэффициент, равен отношению предела выносливости гладких образцов диаметром d к пределу выносливости гладкого стандартного образца диаметром, равным 7,5 мм: (или ).

Шероховатость поверхности

Механическая обработка поверхности детали оказывает существенное влияние на предел выносливости. Это связано с тем, что более грубая обработка поверхности детали создает дополнительные места для концентраторов напряжений и, следовательно, приводит к возникновению дополнительных условий для появления микротрещин.

Предел выносливости обозначается (или ), где индекс R соответствует коэффициенту асимметрии цикла. Так, например, для симметричного цикла он обозначается , для отнулевого цикла (при ), для постоянного цикла .

Предел выносливости при симметричном цикле является наименьшим по сравнению с другими видами циклов, то есть .

Так, например, ; .

предел ограниченной выносливости

Для расчета деталей, не предназначенных к длительной эксплуатации, возникает необходимость в определении наибольшего значения напряжения, которое может выдержать материал при заданном числе циклов (N), значение которого меньше, чем базовое (). В этом случае по кривой усталости и заданному числу циклов (N) определяется соответствующее напряжение (), называемое пределом ограниченной выносливости .

Факторы предела выносливости при симметричном цикле

При оценке прочности детали, работающей в условиях статического нагружения, механические характеристики материала детали полностью отождествляются с механическими характеристиками материала образца, полученными в результате эксперимента. При этом не учитывается разница ни в форме, ни в размерах детали и образца, ни некоторые другие отличия.

При расчете детали на усталость необходимо учитывать упомянутые факторы. К наиболее существенным факторам, которые влияют на предел выносливости при симметричном цикле, относятся концентрация напряжений, абсолютные размеры поперечного сечения детали и шероховатость ее поверхности. Это легко объясняется тем, что все упомянутые факторы способствуют возникновению и распространению микротрещин.

Влияние концентрации напряжений

Вблизи выточек, у краев отверстий, в местах изменения формы стержня, у надрезов и т.п. наблюдается резкое увеличение напряжений по сравнению с номинальными напряжениями, вычисленными по обычным формулам сопротивления материалов. Такое явление называется концентрацией напряжений , а причина, вызывающая значительный рост напряжений – концентратором напряжений .

Зона распространения повышенных напряжений носит чисто местный характер, поэтому эти напряжения часто называют местными.

При напряжениях, переменных во времени, наличие концентратора напряжений на образце приводит к снижению предела выносливости. Это объясняется тем, что многократное изменение напряжений в зоне очага концентрации напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением образца.

Для того чтобы оценить влияние концентрации напряжений на снижение сопротивления усталости образца с учетом чувствительности материала к концентрации напряжений, вводят понятие эффективного коэффициента концентрации, который представляет собой отношение предела выносливости стандартного образца без концентрации напряжений к пределу выносливости образца с концентрацией напряжений: (или ).

Влияние абсолютных размеров поперечного сечения

С увеличением размеров поперечных сечений образцов происходит уменьшение предела выносливости . Это влияние учитывается коэффициентом влияния абсолютных размеров поперечного сечения (ранее этот коэффициент назывался масштабным фактором). Упомянутый коэффициент, равен отношению предела выносливости гладких образцов диаметром d к пределу выносливости гладкого стандартного образца диаметром, равным 7,5 мм: (или ).

Шероховатость поверхности

Механическая обработка поверхности детали оказывает существенное влияние на предел выносливости. Это связано с тем, что более грубая обработка поверхности детали создает дополнительные места для концентраторов напряжений и, следовательно, приводит к возникновению дополнительных условий для появления микротрещин.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Презентация на тему: Невербальные средства общения Презентация на тему: Невербальные средства общения Турагент: бесплатные путешествия или нервная работа? Турагент: бесплатные путешествия или нервная работа? Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений