Метод непрерывной намотки. Стеклопластиковые трубы: технологии производства Технология непрерывной намотки стеклопластиковых труб

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Как выглядит производство труб из стеклопластика? Какими должны быть стеклопластиковые трубы по ГОСТу? Насколько привлекательны их характеристики на фоне альтернативных решений? Давайте попробуем ответить на эти вопросы.

Что это такое

Что представляет собой стеклопластик? Название, в общем-то, дает исчерпывающее представление о составе материала: связующее (эпоксидная или полиэфирная смола) армируется стекловолокном. Армирование обеспечивает устойчивость по отношению к нагрузкам на растяжение и изгиб; связующее гарантирует стойкость к ударным нагрузкам.

Обратите внимание: применяющиеся смолы – типичные реактопласты.
При твердении в них происходят необратимые химические изменения; раз так – в отличие от термопластов, контактная сварка изделий невозможна.
Для соединения под болты, резьбы и т.д.

История

Технология производства зародилась в пятидесятых годах прошлого века, когда началось промышленное изготовление эпоксидных смол. Как и любая новая технология, на начальном этапе эта не пользовалась особой популярностью: отсутствие опыта использования стеклопластика дополняла невысокая цена на традиционные материалы (сталь, медь и алюминий).

Примерно к середине 60-х, однако, картина начала меняться.

Что произошло?

  • Выросли цены на сталь и цветные металлы.
  • Началась коммерческая разработка шельфовых месторождений нефти и газа. Стеклопластиковые трубы НКТ (насосно-компрессорные) выгодно отличались от металлических небольшим весом и, что еще важнее, коррозионной стойкостью: контакт с соленой водой не наносил им никакого ущерба, в отличие от конкурирующих продуктов.
  • Наконец, сами технологии производства стеклопластика тоже не стояли на месте: он становился дешевле и прочнее.

Результат не заставил себя ждать: к концу 60-х американская компания Ameron вышла со своими стеклопластиковыми трубами высокого давления вначале на североамериканский, а затем и на ближневосточный рынок. К 80-годам подтянулись европейские и, чуть позже, советские (позже – российские) производители.

Преимущества

Чем стеклопластик завоевал популярность?

Список его достоинств не слишком велик, но выглядит весьма убедительно.

  1. Весьма разумная на фоне высоколегированных и нержавеющих сталей стоимость .
  2. Стойкость к коррозии и агрессивным средам .

Полезно: при необходимости транспортировки особо агрессивных жидкостей элементы трубопроводов футеруются полиэтиленом высокого давления.

  1. Небольшой вес . Удельная прочность стеклопластика (прочность, отнесенная к плотности) в 3,5 раза выше, чем у стали; таким образом, равнопрочные конструкции из этих материалов будут различаться весом в несколько раз.

  1. Возможность получения материала с заданными механическими свойствами благодаря определенной схеме армирования . Например, спирально-кольцевая намотка стекловолокна обеспечивает высочайшую устойчивость к внутреннему давлению.

Производство

Как выглядит производство стеклопластиковых труб?

К настоящему времени можно выделить четыре основных технологии их изготовления.

Название Описание
Экструзия Смола смешивается с отвердителем и рубленым стекловолокном, после чего продавливается экструдером через кольцевое отверстие. Производство дешево, технологично, однако отсутствие регулярного армирующего каркаса сказывается на итоговой прочности изделий.
Пултрузия Труба формируется между внутренней и наружной оправками. Обе поверхности получаются идеальными; однако ряд технологических ограничений не позволяет производить таким образом трубы больших диаметров и с высоким рабочим давлением.
Центробежное формование Армирование представляет собой готовый рукав из стеклоткани, который прижимается к поверхности вращающейся формы центробежными силами. Они же способствуют равномерному распределению смолы по будущим стенкам. Основное достоинство технологии – возможность получить гладкую наружную поверхность; основной недостаток – энергоемкость и, соответственно, дороговизна.
Намотка Пропитанное связующим стекловолокно (нить, лента или ткань) наматывается на цилиндрическую оправку. Оборудование для производства стеклопластиковых труб методом намотки наиболее распространено благодаря относительной простоте и высокой производительности.

У последнего метода производства есть несколько, так сказать, подвидов. Давайте познакомимся с ними.

Спирально-кольцевая намотка

Укладчик – кольцо с несколькими механизмами подачи пропитанной нити – совершает возвратно-поступательные движения вдоль вращающейся оправки. При каждом проходе укладывается слой волокон с постоянным шагом; кольцевая схема укладки, как мы помним, позволяет добиться максимальной прочности трубы на разрыв.

Любопытно: предварительное натяжение нити тоже благоприятно сказывается на итоговой прочности изделия, предотвращая появление трещин при изгибающих нагрузках.

Методом спирально-кольцевой намотки изготавливаются насосно-компрессорные трубы, рассчитанные на высокие рабочие давления, несущие конструктивные элементы (в том числе композитные опоры ЛЭП) и даже… корпуса ракетных двигателей.

Спирально-ленточная намотка

Разница с предыдущим методом – лишь в том, что за один проход укладчик формирует узкую ленту в десяток-другой волокон. Соответственно, для формирования сплошного армирования требуется куда больше проходов; само армирования получается несколько менее плотным. Главное достоинство метода – куда более простое и, соответственно, дешевое оборудование.

Продольно-поперечная намотка

Принципиальное отличие от предыдущих схем – в том, что намотка делается непрерывной: укладчик одновременно укладывает продольные и поперечные нити. Казалось бы, это должно упростить и удешевить технологию; однако здесь есть сугубо механическая проблема.

Оправка, на которой наматывается будущая труба, вращается; раз так – должны вращаться и катушки, с которых разматывается нить продольного армирования. Причем чем больше диаметр трубы, тем больше должно быть катушек.

Косослойная поперечно-продольная намотка

Это решение было разработано еще при жизни Советского Союза в Харькове и первоначально применялось при производстве корпусов реактивных снарядов. Позже оно получило распространение на всем постсоветском пространстве.

В чем суть метода?

  • Укладчик формирует широкую ленту параллельных пропитанных связующим волокон.
  • Лента перед намоткой на оправку предварительно обматывается нитью без пропитки, впоследствии образующей осевую арматуру. Сами же собранные в ленту нити образуют, соответственно, арматуру поперечную: лента укладывается поперек оси оправки.
  • После укладки каждый слой прокатывается валиками, уплотняющими армирование и вытесняющими лишнее связующее.

Чем выгодна такая схема?

  • Возможностью непрерывного производства. За один проход можно сформировать сколь угодно толстые стенки, просто меняя нахлест ленты.
  • Высокой производительностью.
  • Возможностью производить стеклопластиковые трубы большого диаметра (в теории – без каких-либо ограничений максимального размера). Габариты ограничены только размером оправки.
  • Чрезвычайно высоким содержанием стекловолокна в готовом материале. Оно доходит до 85% против 45-65% при альтернативных способах. Это влияет как на итоговую прочность, так и на горючесть продукции.

Косослойная поперечно – продольная намотка.

Стандарты

Производство интересующих нас изделий регламентируется двумя нормативными документами:

  1. ГОСТ Р 53201-2008 содержит техусловия для изготовления труб диаметром 50-200 мм на резьбовых соединениях.
  2. Разработанный при участии ООО НТТ (Новые Трубные Технологии) ГОСТ Р 54560-2011 описывает детали трубопроводов из “реактопластов, армированных стекловолокном”.

Изучим основные положения документов.

ГОСТ Р 53201-2008

Предусмотренный стандартом режим эксплуатации труб выглядит так:

  • Температура – от -60 до +60С.
  • Относительная влажность – до 100%.
  • Температура транспортируемой жидкости – до +110С.
  • Рабочее давление – от 3,5 до 27,6 МПа.

Предусматриваются следующие варианты использования описанных стандартом изделий:

  1. Транспортировка нефти и газового конденсата.
  2. Транспортировка растворов солей (включая морскую воду).
  3. Сооружение лифтовых колонн.
  4. Крепление скважин различного назначения.

  1. Поддержание пластового давления при разработке подземных месторождений.
  2. Техническое и питьевое водоснабжение.

Стандарт выделяет три типа труб:

Обозначение Расшифровка
НК Насосно-компрессорные
О Обсадные
Л Линейные

Какими могут быть диаметры стеклопластиковых труб, произведенных по ГОСТ Р 53201-2008, и прочие их характеристики?

Насосно-компрессорные, обсадные

Внутренний диаметр, мм Номинальное давление, МПа Масса погонного метра, кг
50 6,9 – 27,6 4,3 – 8,4 1,6 – 3,3
63 6,9 – 27,6 4,6 – 10,7 2,2 – 5,5
100 10,3 – 17,2 8,1 – 12,2 5,8 – 8,2
150 10,3 – 17,2 13,5 – 15,0 14,0 – 14,9
200 10,3 13,6 16,5

На фото – стеклопластиковые НКТ высокого давления.

Линейные

Внутренний диаметр, мм Номинальное давление, МПа Минимальная толщина стенки, мм Масса погонного метра, кг
50 10,3 – 27,6 2,79 – 8,10 1,2 – 3,1
63 8,6 – 27,6 2,80 – 9,90 1,4 – 5,2
100 5,5 – 27,6 2,80 – 16,00 2,3 – 12,8
150 5,5 – 13,8 4,57 – 11,20 5,1 – 12,2
200 5,5 – 13,8 5,84 – 14,70 8,6 – 22,6

Кроме типоразмеров труб, в документе содержится детальная инструкция по изготовлению фитингов с указанием базовых размеров, требования к внешнему виду, максимальным допускам и маркировке всех изделий.

ГОСТ Р 54560-2011

Стандарт описывает трубопроводы, эксплуатирующиеся в куда более мягких по сравнению с описанными выше условиях:

  • Рабочее давление – до 3,2 МПа;
  • Температура среды – до 35С;
  • Транспортируемые жидкости – вода, водные растворы и стоки (бытовые и промышленные).

Важно: действие ГОСТ не распространяется на трубопроводы для внутренних водопроводов и канализации.

В рамках документа продукция классифицируется по следующим признакам:

  • Диаметру (DN). Диапазон значений – от 300 до 3000 миллиметров.
  • Номинальному давлению (PN). Для безнапорных труб само понятие PN довольно условно и берется равным 0,1 – 0,4 МПа; для напорных оно принимает значения 0,6, 1,0, 1,6, 2,0, 2,5 и 3,2 МПа.
  • Номинальной жесткости (SN). Она тоже измеряется в мегапаскалях и может быть равной 1250, 2500, 5000 и 10000.

Обратите внимание: при прокладке своими руками стоит учитывать, что трубы SN 1250 не рекомендованы для подземной прокладки в принципе, а SN 2500 рекомендуется прокладывать в лотках.

Документ, как и предыдущий, перечисляет основные размеры всех видов фитингов и требования к их внешнему виду, прочности, маркировке и методам армирования.

Заключение

Разумеется, в нашем материале мы коснулись лишь небольшой части весьма обширной темы использования стеклопластика. Мы не выяснили, можно ли применять стеклопластиковые трубы для отопления или бытовой канализации, насколько они хороши на фоне металлополимерных или полностью пластиковых изделий. Часть из этих вопросов затрагивает видео в этой статье. Успехов!

Большинство стеклопластиковых труб в мире изготавливаются методом непрерывной намотки стекловолокна со связующим компонентом (таким, как полиэфирная или эпоксидная смола) на оправку.

Суть технологии

Труба изготавливается с применением, так называемой "шагающей" оправки и ступенчатого процесса охлаждения. Движущиеся в продольном направлении сектора оправки продвигают намотанную трубу через печи, в которых производится ее предварительная термообработка, труба сходит с оправки и окончательно отверждается в последующих печах. Разрезка трубы абразивным "алмазным" кругом на необходимую длину.

Структура трубы

Технологический процесс изготовления стеклопластиковых труб и фасонных изделий заключается в послойном нанесении (на стальную оправку) стекломатериалов, пропитанных смолой «холодного» отверждения. Тип смолы выбирается в соответствии со свойствами транспортируемой по трубопроводу среды. После полимеризации образуется монолитная, инертная и высокопрочная структура со стенкой следующего строения:

Стеклопластиковый (армированный термореактивный) лайнер (внутренняя стенка) обеспечивает герметичность и стойкость к воздействию агрессивной и/или абразивной среды, транспортируемой по трубопроводу. Абсолютная шероховатость внутренней стенки составляет 23 мкм.

Силовой стеклопластиковый слой обеспечивает механическую прочность при совместном действии внутренних и внешних нагрузок в процессе эксплуатации трубопровода.

Внешний слой обеспечивает гладкость внешней поверхности и стойкость к воздействию влаги, атмосферных явлений, ультрафиолетовых лучей и химических веществ.

Структура стеклопластиковой трубы, изготовленной методом непрерывной намотки

Оборудование для изготовления стеклопластиковых труб, емкостей и других тел вращения по технологии намотки состоит из следующих составляющих:

· секция подачи стеклянного ровинга,

· установка для приготовления связующего: смесь полиэфирная смола - катализатор или другой тип связующего,

· ванна с связующим - катализированной полиэфирной смолой или другим типом смолы, через которую проходят и смачиваются нити ровинга,

· секция намотки с валами вращения, размер которых определяет диаметр конечного изделия из стеклопластика,

· органы управления оборудованием для намотки.

Преимущества применения труб, изготовленных по технологии непрерывной намотки:

· высокая удельная прочность;

· малый вес в 4 раза легче стальных труб;

· высокая коррозионная стойкость;

· высокая надежность и долговечность;

· минимальные затраты на монтаж и обслуживание, высокая ремонтопригодность;

· малое гидравлическое сопротивление, отсутствие "зарастания" внутреннего сечения;

· экологическая чистота транспортируемых продуктов. Имеется гигиенически сертификат;

· длительный срок эксплуатации труб: в зависимости от конкретных условий - от 20 до 60 лет, без ремонта.

Стеклопластик представляет собой стеклонаполненный материал композитного типа. В его состав входят связующее (в качестве которого применяется полиэфирная смола) и наполнитель (стекловолокно). Основное предназначение наполнителя заключается в армировании и придании материалу необходимой прочности. Благодаря добавлению полиэфирной смолы обеспечивается монолитность материала, защита стекловолокна от негативного воздействия агрессивных сред и максимально эффективное использование его прочности.

26.11.2014 г. 1862

Стеклопластик - это материал, характеризующийся небольшим удельным весом, имеющие достаточно широкий спектр сфер применения от ЖКХ до оборонки. Отличаясь малой теплопроводностью (приблизительно, как у дерева), высокой удельной прочностью (больше, чем у стали), влагостойкостью, биологической стойкостью и атмосферостойкостью, присущими полимерам, данный материал не имеет недостатков, которыми обладают термопласты. Это один из наименее дорогостоящих и самых доступных композиционных стройматериалов.

Основные затраты при изготовлении стеклопластиковых изделий, как правило, приходятся на оборудование и рабочую силу. Второй пункт затрат связан с трудоемкостью и значительными затратами времени. Таким образом, в настоящее время изделия из данного материала уступают в цене продукции из металла. Во многом это обусловлено сложностью и длительностью осуществления процедуры выклейки стеклопластиковых деталей, следствием чего становится возникновение серьезных препятствий при массовом производстве. Применение стеклопластика оказывается наиболее выгодным в случае с мелкосерийным производством. Высокая эффективность крупносерийного производства достигается при использовании технологии автоматической непрерывной намотки.

При изготовлении труб из стеклопластика, роль армирующих волокон обычно отводится ровингу либо стеклянной нити. Эпоксидные, полиэфирные смолы используются как связующее. Сегодня существуют два основных метода, которые находят применение при изготовлении стеклопластиковых труб: метод непрерывной намотки и метод центробежного формования.

Технология периодической намотки, которая была перенята с предприятий, функционирующих в сфере оборонной промышленности, не получила широкого распространения. Этим способом обычно пользуются при изготовлении труб из стеклопластика на эпоксидном связующем. Большая часть стеклопластиковых труб в мире производится по технологии непрерывной намотки волокна и связующего компонента на оправку. После завершения намотки труба затвердевает. Затем ее снимают с оправки, подвергают испытаниям и отправляют заказчику.

В этом случае труба производится с использованием «шагающей» оправки и реализуемой ступенчато процедуры охлаждения. Сектора оправки, которые перемещаются в продольном направлении, передвигают намотанную трубу через специальные печи, где проводится предварительная термическая обработка. Далее труба снимается с оправки. Окончательно затвердевание проводится в последующих печах. После этого полученная заготовка разрезается при помощи «алмазного» круга на куски требуемой длины.

Технологический процесс производства стеклопластиковых труб состоит в послойном нанесении на выполненную из стали оправку стекломатериалов, которые заранее пропитываются смолой «холодного» отверждения. При подборе типа смолы учитываются свойства жидкости, которую планируется транспортировать по трубопроводу. Схему армирования определяют путем проведения расчета, который следует выполнять согласно международных стандартов ASTM/AWWA, основываясь на заданных условиях установки и последующей эксплуатации трубопровода. После завершения полимеризации происходит образование инертной, монолитной, очень прочной структуры со стенкой, состоящей из нескольких слоев. Стеклопластиковый лайнер (внутренняя стенка) обеспечивает требуемую стойкость к влиянию агрессивных, а также абразивных сред, транспортируемых по трубопроводу, и герметичность.

Величина абсолютной шероховатости внутренней стенки равна 23 мкм. Силовой слой предназначен для обеспечения механической прочности при объединенном воздействии внешних и внутренних нагрузок во время эксплуатации трубопровода. Функцией внешнего слоя (его еще называют гель-коут) является обеспечение необходимой гладкости наружной поверхности трубы, влагостойкости, стойкости к влиянию химикатов, ультрафиолетового излучения, различных атмосферных явлений.

Технологическая линия производства стеклопластиковых труб по методу непрерывной намотки включает в себя секцию подачи ровинга, установку, предназначенную для подготовки связующего, ванну со связующим (через нее перемещаются и смачиваются нити ровинга), секцию намотки, оснащенную валами вращения (от размера последних зависит диаметр конечной продукции), а также органы, обеспечивающие управление всем оборудованием.

Трубы из стеклопластика, изготавливаемые по данной технологии, имеют целый ряд достоинств, среди которых следует отметить высокую удельную прочность, стойкостью к коррозии, небольшой вес, долговечность (срок эксплуатации до шестидесяти лет без проведения ремонта), надежность, малые затраты на установку и последующее обслуживание, высокую ремонтопригодность, небольшое гидравлическое сопротивление, гарантию сохранения чистоты транспортируемой продукции с точки зрения экологии.

Второй способ производства труб из стеклопластика - центробежное формование, был предложен фирмой Hobas. Технологический процесс изготовления труб по данной технологии происходит в направлении от внешней поверхности к внутренней, с использованием вращающейся формы. Сырьем для изготовления труб по этому методу служат рубленые волокнистые жгуты из стекла, песок и полиэфирная смола. Названные материалы подаются на вращающуюся матрицу. В итоге образование структуры трубы начинается с внешнего слоя. Во время изготовления происходит добавление в жидкую смолу наполнителя, стеклянного волокна и твердого сырья. Полимеризация смолы осуществляется под воздействием катализатора. Дополнительное ускорение данного процесса достигается за счет нагревания. Необратимость процедуры полимеризации обусловлена 3-хмерными пространственными химическими связями. Таким образом, материал в полной мере сохраняет пространственную стабильность, даже если температура окружающей среды бывает повышенной.

Стеклопластиковые трубы, выполненные по методу центробежного формования, находят применение при прокладке канализации, устройстве дренажа, сооружении трубопроводов, по которым транспортируется питьевая, техническая вода, промышленных трубопроводов, на гидроэлектростанциях и т.д.

Помимо этого, нужно отметить, что такие стеклопластиковые трубы могут использоваться с применением разных способов укладки. Сюда относятся: технология протаскивания, метод микротуннеля, метод надземной укладки и укладка открытым способом.

Применяются как для транспортировки по ним различных сред, так и в качестве конструкционных элементов (опор, колонн, перекладин, оболочек).

История

Появление и выпуск стеклопластиковых труб стали возможными в середине 1950-х годов, когда был освоен промышленный выпуск реактопластичных связующих (прежде всего - эпоксидных смол) и стеклянных волокон. Уже тогда стали очевидными преимущества этих труб: малая масса и высокая коррозионная стойкость. Однако, в указанный период завоевать какую-либо долю рынка трубной продукции они ещё не могли по причине низкой цены на «традиционные» трубные материалы: сталь (в том числе нержавеющую) медь и алюминий. В середине 1960-х годов ситуация начала меняться. Во-первых, резко подорожали легированная сталь и алюминий. Во-вторых, начало добычи нефти на морских шельфах и в труднодоступных районах суши потребовало применения легких и коррозионно стойких труб. В третьих, технологии производства стеклопластиковых труб были усовершенствованы, а характеристики продукции улучшены. В эти годы фирма Ameron (США) освоила крупносерийный выпуск стеклопластиковых труб высокого давления (до 30 МПа) для нефтепромыслов. Трубы имели коммерческий успех и в США появилось множество производителей стеклопластиковой продукции. В 1970-х годах на нефтепромыслах Северной Америки и Ближнего Востока стеклопластиковые трубы производства США получили широкое распространение.

В 1980-х годах интерес к стеклопластиковым трубам появился во всех промышленно развитых странах. Их производство и применение освоили в Европе, Японии, Тайване. Начались эксперименты по применению стеклопластиковых труб и в СССР.

Технологии производства

По состоянию на 2013 год известны четыре принципиально отличающихся технологии производства стеклопластиковых труб:

  • Намотка пропитанной связующим стеклянной арматуры на наружную поверхность технологической оправки (мандрели);
  • Центробежное литье;
  • Центробежное формование из препрега на внутренней поверхности технологической оправки (формы);
  • Пултрузия в зазоре между наружной и внутренней оправками;
  • Экструзия связующего, наполненного в объеме рубленным стеклянным волокном.

Намотка

Технология намотки (навивки) наиболее проста по реализации и обеспечивает высокую производительность. Намотка может быть как периодической так и непрерывной. Технология намотки обеспечивает высокое качество внутренней поверхности трубы за счет её формования на наружной поверхности оправки, но качество наружной поверхности низкое по причине отсутствия снаружи формообразующих элементов. Для труб, используемых для транспортировки жидкостей и газов последнее обстоятельство не принципиально.

Известна намотка с использованием термореактивных (полиэфирные, эпоксидные, фенолформальдегидные и др. смолы) и термопластичных (полипропилен, полиэтилен, полиамид, полиэтилентерефталат и др.) полимерных связующих. При использовании термопластичных связующих возможны одностадийные и двухстадийные технологии намотки. При использовании одностадийной технологии процесс совмещения (пропитки) волокнистого наполнителя термопластичным связующим и намотка на оправку происходят последовательно на одной и той же технологической установке . При использовании двухстадийной технологии сначала в результате операции совмещения получают предварительно пропитанный материал (препрег) в виде нити, ленты, стренги. Затем полученный препрег снова разогревают и наносят на оправку.

Известно множество способов укладки армирующих стеклянных волокон, но промышленное применение нашли спирально-кольцевой, спирально-ленточный, продольно-поперечный и косослойный продольно-поперечный способы.

Спирально-кольцевая намотка

Способ впервые предложен и реализован фирмой Ameron (США) в 1960-х года для производства стеклопластиковых насосно-компрессорных труб. При спирально-кольцевой намотке (СКН) укладчик, представляющий собой кольцо с равномерно расположенными по окружности фильерами движется возвратно-поступательно вдоль оси вращающейся оправки. Такое движение обеспечивает укладку непрерывных на всей длине волокон с равным шагом вдоль винтовых линий. Варьируя соотношение скорости вращения оправки и поступательного движения укладчика можно изменять угол укладки волокон. На концевых участках трубы в зоне реверсирования укладчика угол укладки волокон уменьшают таким образом, чтобы они удерживались на поверхности оправки силами трения. За счет этого волокна сохраняют натяжение, приданное им укладчиком и после отверждения связующего арматура трубы становится напряженной, что улучшает физико-механические свойства изделия.

К достоинствам спирально-кольцевой намотки относятся:

  • высокая производительность по причине укладки за один проход большого количества волокон;
  • высокая прочность получаемых труб;
  • возможность получения равной прочности в кольцевом и осевом направлениях;
  • высокое значение осевого модуля упругости;
  • за счет предварительного натяжения арматуры связующее хорошо переносит растягивающие нагрузки без растрескивания;
  • возможность формирования со сложной формой образующего сечения, а также труб переменного диаметра;
  • возможность укладки стеклоровингов, состоящих из большого количества элементарных волокон (свыше 2400 текс);
  • при использовании разборной или разрушаемой оправки возможность формирования замкнутых оболочек (баллонов, корпусов ракетных двигателей).

По причине указанных преимуществ спирально-кольцевая намотка получила широкое распространение при изготовлении труб высокого давления (в частности насосно-компрессорных труб), конструкционных труб, композитных опор ЛЭП, корпусов ракетных двигателей твердого топлива.

Тем не менее данная технология имеет свои недостатки:

  • высокая сложность оборудования;
  • большая масса укладчика в сочетании с его быстрым возвратно-поступательным движением приводит к повышенным нагрузкам на приводы и направляющие механизмы;
  • сложность зарядки стекловолокна в нитепроводящий тракт;
  • значительное увеличение числа (до нескольких сот и даже тысяч) укладываемых волокон при намотке труб большого диаметра, что обуславливает необходимость применения большого количества фильер и других элементов нитепроводящего тракта;
  • по причине необходимости реверсивного движения укладчика относительно оправки спиральный способ мало пригоден для непрерывной намотки.

По причине указанных недостатков спирально-кольцевая намотка редко применяется для производства труб большого диаметра.

Спирально-ленточная намотка

По принципу спирально-ленточная намотка (СЛН) не отличается от спирально-кольцевой, однако укладчик формирует лишь узкую ленту, состоящую из нескольких десятков волокон. Сплошность армирования обеспечивается многократными проходами укладчика. Такая технология проще спирально-кольцевой и позволяет формировать трубы больших диаметров, но имеет ряд недостатков:

  • производительность способа существенно ниже по причине необходимости большого количества проходов укладчика;
  • укладка волокон неравномерная и рыхлая, что ухудшает физико-механические характеристики труб.

Тем не менее, спирально-ленточная намотка имеет широкое распространение в производстве труб общего назначения низких и средних давлений.

Продольно-поперечная намотка

При продольно-поперечной намотке (ППН) волокна, армирующие трубу в продольном и поперечном направлениях укладываются независимо друг от друга. При этом нет необходимости в реверсивном движении укладчика и такой способ пригоден для реализации непрерывной намотки. К достоинствам ППН следует отнести:

  • высокую производительность;
  • возможность изменять соотношение кольцевой и осевой арматуры в более широких пределах, чем при спиральных способах;
  • возможность реализации непрерывной намотки;
  • непрерывность осевых волокон и возможность их натяжения, в результате чего физико-механические характеристики труб получаются не хуже чем при спиральных способах.

Недостатки ППН:

  • Необходимость применения вращающегося укладчика продольных волокон, что усложняет оборудование;
  • В случае больших диаметров труб необходимость размещения большого числа катушек с волокнами во вращающемся укладчике.

Продольно поперечная намотка нашла широкое применение в поточном производстве стеклопластиковых труб малых диаметров (до 75 мм).

Косослойная продольно-поперечная намотка

Технология была разработана в СССР в для массового производства стеклопластиковых корпусов реактивных снарядов. За пределами России и Украины малоизвестна. В России - наоборот, была широко распространена до середины 2000-х годов. При косослойной продольно-поперечной намотке (КППН) укладчиком формируется псевдолента, состоящая из параллельного пучка пропитанных связующим волокон, наматываемого под небольшим углом на поверхность оправки (образуя кольцевую арматуру), который предварительно обматывается непропитанными волокнами, образующими после укладки осевую арматуру. Псевдолнента укладывается на оправку с нахлестом на предыдущий виток. После укладки на оправку слои псевдоленты прикатываются роликами, наружная поверхность которых имеет винтовые линии. Прикатка роликами уплотняет слой арматуры, удаляя лишнее связующее. В результате этого укладка волокон получается очень плотной, а слой связующего между ними имеет минимальную толщину, что положительно сказывается на прочности стеклопластика и снижает его горючесть. Благодаря прикатке удается получить содержание стекла в отвержденном стеклопластике 75%-85% по массе - результат недостижимый для других способов (СКН дает содержание стекла порядка 65%, а СКЛ и ППН - 45%-60%). Варьируя нахлест, можно изменять толщину стенки трубы, укладываемую за один проход. Такой способ позволяет реализовывать непрерывную намотку, а также намотку труб большого диаметра малым числом одновременно укладываемых волокон.

К достоинствам КППН следует отнести:

  • очень высокую производительность, особенно при намотке труб больших диаметров (свыше 150 мм);
  • возможность намотки труб сколь угодно больших диаметров (теоретически - до бесконечности);
  • возможность непрерывной намотки;
  • очень высокую плотность укладки волокон;
  • низкую горючесть полученного стеклопластика;
  • возможность варьирования в широких пределах соотношения кольцевого и осевого армирования;
  • отсутствие сплошной осевой арматуры, что улучшает диэлектрические свойства стеклопластика.

К недостаткам КППН относятся:

  • возможность межслойного растрескивания, что не позволяет создавать по данной технологии трубы высокого давления;
  • использование прикаточных роликов осложняет применение быстрозатвердевающих связующих;
  • отсутствие предварительного натяжения осевой арматуры снижает модуль упругости стеклопластика.

Намотка стеклотканью

Намотка стеклотканью используется сравнительно редко, по причине более высокой стоимости стеклоткани по сравнению с неткаными волокнами. По технологическим свойствам намотка стеклотканью близка к КППН и иногда используется для мелкосерийного изготовления крупногабаритных труб.

Центробежное формование

В 1957 году в швейцарском городе Базель, зародилась идея, использовать центробежное литье для производства стеклопластиковых труб (CC-GRP - Centrifugally Cast Glassfiber Reinforced Plastic). Данная технология была впервые разработана, применена и получен патент компанией HOBAS

При этом способе материалы, составляющие стенку трубы, подаются фидером, управляемым цифровым контроллером, во внутреннюю часть быстро вращающейся стальной формы.

Состав материалов – это полиэфирная смола, рубленый ровинг из стекловолокна, кварцевый песок и мраморная мука.

Внутренний диаметр вращающейся формы является внешним диаметром готовой стеклопластиковой трубы. Это дает возможность получать трубу с точностью внешнего диаметра 0.1 мм.

Данный метод позволяет также делать стенку трубы более однородной и монолитной, избегать газообразных включений и расслоений.

Так как отлить стенку трубы можно практически любой толщины, то композитные изделия повышенной кольцевой жесткости

(более SN 12 000 n/м² и выдерживающие высокие осевые нагрузки трубы для микротоннелирования изготавливаются преимущественно этим способом.

Пултрузия

Пултрузия является высокопроизводительным способом производства стеклопластиковых труб и обеспечивает высокое качество наружной и внутренней поверхности. В то же время пултрузия имеет ряд ограничений:

  • сложность реализации кольцевого армирования;
  • сложность получения труб больших диаметров;
  • сложность технологической реализации по сравнению с намоткой;
  • необходимость применения специальных связующих с малым временем начального отверждения.

Пултрузия применяется для массового производства стеклопластиковых труб малых диаметров малых рабочих давлений сантехнического и отопительного назначения, а также в производстве стеклопластиковых удилищ.

Экструзия

Экструзионные стеклопластиковые трубы не имеют сплошного регулярного каркаса арматуры. Связующее наполняется хаотично ориентированным рубленным стеклянным волокном. Такая технология проста и высокопроизводитела, но отсутствие сплошного армирование существенно ухудшает физико-механические характеристики труб. В качестве полимерной матрицы у экструзионных стеклопластиковых труб используются, в основном, термопласты (полиэтилен, полипропилен).

Применение и эксплуатационные особенности

Актуальность и экономическая целесообразность применения стеклопластиковых труб определяется рядом их эксплуатационных особенностей по сравнению с трубами других типов.

  • Стеклопластики характеризуются плотностью 1750-2100 кг/м 3 , при этом их прочность на растяжение лежит в пределах 150-350 МПа. Таким образом по удельной прочности стеклопластик сопоставим с качественной сталью и значительно превосходит по этому показателю термопластичные полимеры (ПНД, ПВХ).
  • Стеклопластик обладает высокой коррозионной стойкостью, так как стекло и отвержденные термореактивные смолы (полиэфирная, эпоксидная), входящие в его состав, обладают низкой реакционной способностью. По этому показателю стеклопластик существенно превосходит черные и цветные металлы и сопоставим с нержавеющей сталью.
  • Стеклопластик является трудногорючим, трудновоспламеняемым самозатухающим материалом с высоким значением кислородного индекса , так как негорючее стекло составляет в массе стеклопластика значительную долю. По этому показателю стеклопластик превосходит гомогенные и наполненные термопластичные полимеры.
  • Стеклопластик является анизотропным материалом и его свойствами в заданных направлениях легко управлять, варьируя схему укладки волокон. Таким образом стеклопластиковые трубы могут быть выполнены с равным запасом прочности в осевом и кольцевом направлениях. В изотропных материалах при нагружении труб внутренним давлениям запас прочности в кольцевом направлении всегда в 2 раза меньше чем в осевом.
  • Предел текучести стеклопластика близок к пределу прочности, по этой причине стеклопластиковые трубы значительно менее эластичны, чем стальные или термопластичные.
  • Стеклопластик не сваривается. Соединения труб производятся с помощью фланцев, муфт, ниппель-раструбных соединений, клея.

Исходя из указанных особенностей сформировался ряд областей применения стеклопластиковых труб:

Нефтедобыча

В нефтедобывающей промышленности стеклопластиковые трубы находят применение по причине высокой коррозионной стойкости в агрессивных средах (пластовые воды, сырая нефть, буровые и технологические растворы) по сравнению со сталью и высокой удельной прочности по сравнению с термопластичными полимерами.

Из стеклопластика изготавливают насосно-компрессорные и линейные (систем ППД) трубы диаметром до 130 мм на рабочие давления до 30 МПа, трубы для нефтесборных трубопроводов диаметром до 300 мм на рабочие давления до 5 МПа, трубы магистральные диаметром до 1200 мм на рабочие давления до 2,5 МПа.

Угольная промышленность

В угольной промышленности существуют ограничения на применяемые в закрытых горных выработках материалы. Так правила безопасности в угольных шахтах устанавливают, что изделия из неметаллических материалов, находящиеся в закрытых горных выработках должны иметь кислородный индекс не менее 28%, быть трудногорючими, трудновоспламеняемыми (согласно ГОСТ 12.1.044), а продукты их горения не должны быть высокотоксичными. По указанным причинам применение полиэтиленовых и полипропиленовых труб в угольных шахтах невозможно. В то же время, стеклопластиковые трубы этим требованиям отвечают. Применение в шахтах стеклопластиковых труб целесообразно по ряду причин:

  • малая масса, что весьма актуально, поскольку шахтные трубопроводы имеют большие диаметры (150 - 1200 мм) и монтируются, как правило, вручную;
  • коррозионная стойкость в рудничной атмосфере;
  • гладкая внутренняя поверхность, снижающая образование отложений угольной пыли и другой пыли, неизбежно присутствующей в транспортирумых средах;
  • безопасность при взрывах метана, поскольку разрушение стеклопластика происходит без образования травмоопасных осколков.

Жилищно-коммунальное хозяйство

Стеклопластиковые трубы нашли применение в ЖКХ, в основном, в качестве канализационных. Это связано с тем, что трубы канализации имеют диаметры порядка 600 - 2500 мм,работают без внутреннего давления в условиях внешних нагрузок от грунта и давления грунтовых вод. Высокая кольцевая жесткость стеклопластика позволяет создавать трубы для указанных условий.

Еще одним применение стеклопластиковых труб в ЖКХ являются мусоропроводы. В последние 10-15 лет стеклопластиковые трубы находят применение и в качестве дымовых на газовых котельных и ТЭЦ.

Ограничивающим фактором широкого применения коррозионностойких полиэтиленовых труб на нефтепромыслах является их относительно низкая несущая способность (рабочие давления транспортируемой среды не превышают 1,0 МПа). Для расширения областей применения полиэтиленовых труб при более высоких давлениях и для работы в условиях Крайнего Севера разработаны и успешно применяются на нефтегазопромыслах комбинированные трубы нового поколения с рабочим давлением до 20,0 МПа и равнопрочными с телом трубы соединениями. Усилие полиэтиленовой оболочки обеспечивается формированием на ней стеклопластиковой оболочки - бипластмассовые трубы (БПТ).


В настоящий момент имеется опыт применения стеклопластиковых труб, использующихся для транспортировки шламов, абразивосодержащих, химически активных сред, нефти и газа, а также единичные случаи использования насосно-компрессорных и обсадных труб из стеклопластиков в артезианских и нефтегазовых скважинах глубиной до 2600 м.

Широкое использование стеклопластиков сдерживается на данный момент отсутствием научно обоснованных положений, позволяющих еще на этапе конструирования сформулировать требования к характеристикам таких труб и апробированных методик расчета, учитывающих как специфику свойств самого материала труб, так и конкретных условий их эксплуатации.

Таким образом, разработка новых и адаптация уже существующих методик конструирования и расчета обсадных труб, создание многослойных оболочек из стеклопластиковых композиционных материалов, а так же исследование поведения стеклопластикового материала под нагрузкой в условиях, близких к эксплуатационным, становится в настоящее время актуальным и современным фактором развития нефтегазовой отрасли.

БИПЛАСТМАССОВЫЕ ТРУБЫ

В 2000 году на базе АОЗТ "Композит-нефть" (г. Пермь) были выбраны материалы и предложена новая конструкция бипластмассовых труб, внешняя силовая оболочка которых состоит из нескольких слоев однонаправленного стеклопластика, внутренний герметизирующий слой - из полиэтилена низкого давления (ПЭНД), для обеспечения адгезии между данными слоями разработана специальная композиция на основе сэвилена.

Предложены новые конструкции разъемного и неразъемного стыка и соединительных деталей бипластмассовых труб, обеспечивающие равно-прочность и герметичность внутрипромысловых нефтепроводов высокого давления (до 20 МПа).

Разработана технология и оборудование для серийного автоматизированного производства бипластмассовых труб и соединительных деталей.

Технология изготовления бипластмассовых труб внедрена в серийное производство. В г. Чернушка Пермской области развернуто производство бипластмассовых труб и соединительных деталей объемом 180 км в год. Разработана инструкция по монтажу, эксплуатации и ремонту трубопроводов, по которой смонтированы и в настоящее время успешно эксплуатируется более 1000 км трубопроводов из бипластмассовых труб по стоимости на 25-30% ниже зарубежных аналогов в ОАО "ПК ЛУКОЙЛ", ООО "ЛУКОЙЛ-Пермнефть", ОАО "Удмуртнефть", ОАО "Ставрополь-нефтегаз" на месторождеггиях Пермской и Тюменской областей, Ставропольском крае, Удмуртии. Оценка экономической эффективности замены металлических трубопроводов на трубопроводы из разработанных бипластмассовых труб показала, что вследствие низких расходов на строительство и эксплуатацию последних затраты на приобретение более дорогих бипластмассовых труб окупаются через пять лет.

СТАЛЬНЫЕ ТРУБЫ С ОБОЛОЧКОЙ ИЗ СТЕКЛОПЛАСТИКА

На "Московском трубозаготовительном комбинате" (www.mostzk.ru) в 2015 года было освоено эпоксидное покрытие для стальных газопроводов.

В марте 2015 года было выпущено десятки километров труб диаметром 426 мм. Данное покрытие труб заинтересует потребителей прокладывающих наземные стальные газопроводы.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Презентация на тему: Невербальные средства общения Презентация на тему: Невербальные средства общения Турагент: бесплатные путешествия или нервная работа? Турагент: бесплатные путешествия или нервная работа? Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений