Принцип работы реактивного двигателя. Описание и устройство

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Жидкостный ракетный двигатель – это двигатель, топливом для которого служат сжиженные газы и химические жидкости. В зависимости от количества компонентов ЖРД делятся на одно-, двух- и трехкомпонентные.

Краткая история развития

Впервые использование сжиженного водорода и кислорода как топлива для ракет предложил К.Э. Циолковский в 1903 году. Первый прототип ЖРД создал американец Роберт Говард в 1926 году. Впоследствии подобные разработки проводились в СССР, США, Германии. Самых больших успехов добились немецкие ученые: Тиль, Вальтер, фон Браун. Во время Второй мировой войны они создали целую линейку ЖРД для военных целей. Есть мнение, что создай Рейх «Фау-2» раньше, они бы выиграли войну. Впоследствии холодная война и гонка вооружений стали катализатором для ускорения разработок ЖРД с целью применения их в космической программе. При помощи РД-108 были выведены на орбиту первые искусственные спутники Земли.

Сегодня ЖРД используется в космических программах и тяжелом ракетном вооружении.

Сфера применения

Как уже было сказано выше, ЖРД используется в основном как двигатель космических аппаратов и ракет-носителей. Основными преимуществами ЖРД есть:

  • наивысший удельный импульс в классе;
  • возможность выполнения полной остановки и повторного запуска в паре с управляемостью по тяге дает повышенную маневренность;
  • значительно меньший вес топливного отсека в сравнении со твердотопливными двигателями.

Среди недостатков ЖРД:

  • более сложное устройство и дороговизна;
  • повышенные требования к безопасной транспортировке;
  • в состоянии невесомости необходимо задействовать дополнительные двигатели для осаждения топлива.

Однако основным недостатком ЖРД является предел энергетических возможностей топлива, что ограничивает космическое освоение с их помощью до расстояния Венеры и Марса.

Устройство и принцип действия

Принцип действия ЖРД один, но он достигается при помощи разных схем устройств. Горючее и окислитель при помощи насосов поступают из разных баков на форсуночную головку, нагнетаются в камеру сгорания и смешиваются. После возгорания под давлением внутренняя энергия топлива превращается в кинетическую и через сопло вытекает, создавая реактивную тягу.

Топливная система состоит из топливных баков, трубопроводов и насосов с турбиной для нагнетания топлива из бака в трубопровод и клапана-регулятора.

Насосная подача топлива создает высокое давление в камере и, как следствие, большее расширение рабочего тела, за счет которого достигается максимальное значение удельного импульса.

Форсуночная головка – блок форсунок для осуществления впрыска топливных компонентов в камеру сгорания. Основное требование к форсунке – качественное смешивание и скорость подачи топлива в камеру сгорания.

Система охлаждения

Хотя доля теплоотдачи конструкции в процессе сгорания незначительна, проблема охлаждения актуальна ввиду высокой температуры горения (>3000 К) и грозит термическим разрушением двигателя. Выделяют несколько типов охлаждения стенок камеры:

    Регенеративное охлаждение базируется на создании полости в стенках камеры, через которую проходит горючее без окислителя, охлаждая стенку камеры, а тепло вместе с охладителем (горючим) возвращается обратно в камеру.

    Пристенный слой – это созданный из паров горючего слой газа у стенок камеры. Достигается этот эффект путем установки по периферии головки форсунок подающих только горючее. Таким образом горючая смесь испытывает недостаток окислителя, и горение у стенки происходит не так интенсивно, как в центре камеры. Температура пристенного слоя изолирует высокие температуры в центре камеры от стенок камеры сгорания.

    Абляционный метод охлаждения жидкостного ракетного двигателя осуществляется нанесением на стенки камеры и сопел специального теплозащитного покрытия. Покрытие при высоких температурах переходит из твердого состояния в газообразное, поглощая большую долю тепла. Данный метод охлаждения жидкостного ракетного двигателя использовался в лунной программе «Аполлон».

Запуск ЖРД очень ответственная операция в плане взрывоопасности при сбоях в ее осуществлении. Есть самовоспламеняющиеся компоненты, с которыми не возникает трудностей, однако при использовании для воспламенения внешнего инициатора необходима идеальная согласованность подачи его с компонентами топлива. Скопление несгоревшего топлива в камере имеет разрушительную взрывную силу и сулит тяжелые последствия.

Запуск больших жидкостных ракетных двигателей проходит в несколько ступеней с последующим выходом на максимальную мощность, в то время как малые двигатели запускаются с моментальным выходом на стопроцентную мощность.

Система автоматического управления жидкостных ракетных двигателей характеризируется выполнением безопасного запуска двигателя и выхода на основной режим, контролем стабильной работы, регулировкой тяги согласно плану полета, регулировкой расходников, отключением при выходе на заданную траекторию. Вследствие не поддающихся расчетам моментов ЖРД оснащается гарантийным запасом топлива, чтобы ракета могла выйти на заданную орбиту при отклонениях в программе.

Компоненты топлива и их выбор в процессе проектирования являются решающими в схеме построения жидкостного ракетного двигателя. Исходя из этого, определяются условия хранения, транспортировки и технологии производства. Важнейшим показателем сочетания компонентов является удельный импульс, от которого зависит распределение процента массы топлива и груза. Размеры и масса ракеты рассчитываются при помощи формулы Циолковского. Кроме удельного импульса, плотность влияет на размер баков с компонентами горючего, температура кипения может ограничивать условия эксплуатации ракет, химическая агрессивность свойственна всем окислителям и при несоблюдении правил эксплуатации баков может стать причиной возгорания бака, токсичность некоторых соединений топлива может нанести серьезный вред атмосфере и окружающей среде. Поэтому фтор хотя и является лучшим окислителем, чем кислород, не используется ввиду своей токсичности.

Однокомпонентные жидкостные ракетные двигатели как топливо используют жидкость, которая, взаимодействуя с катализатором, распадается с выходом горячего газа. Основное преимущество однокомпонентных ЖРД в простоте их конструкции, и хотя удельный импульс таких двигателей небольшой, они идеально подходят как двигатели с малой тягой для ориентации и стабилизации космических аппаратов. Данные двигатели используют вытеснительную систему подачи горючего и ввиду небольшой температуры процесса не нуждаются в системе охлаждения. К однокомпонентным двигателям относятся также газореактивные двигатели, которые используются в условиях недопустимости тепловых и химических выхлопов.

В начале 70-х годов США и СССР разрабатывали трехкомпонентные жидкостные ракетные двигатели, которые использовали бы в качестве горючего водород и углеводородное горючее. Таким образом двигатель работал бы на керосине и кислороде при запуске и переключался на жидкий водород и кислород на большой высоте. Примером трехкомпонентного ЖРД в России есть РД-701.

Управление ракетой впервые было применено в ракетах «Фау-2» при использовании графитных газодинамических рулей, однако это снижало тягу двигателя, и в современных ракетах используются поворотные камеры, прикрепленные к корпусу шарнирами, создающими маневренность в одной или двух плоскостях. Кроме поворотных камер, используются также двигатели управления, которые закреплены соплами в противоположном направлении и включаются при необходимости управления аппаратом в пространстве.

ЖРД закрытого цикла – это двигатель, один из компонентов которого газифицируется при сжигании при небольшой температуре с малой частью другого компонента, полученный газ выступает как рабочее тело турбины, а после подается в камеру сгорания, где сгорает с остатками топливных компонентов и создает реактивную тягу. Основным недостатком данной схемы есть сложность конструкции, но при этом удельный импульс увеличивается.

Перспектива увеличения мощности жидкостных ракетных двигателей

В российской школе создателей ЖРД, руководителем которой долгое время был академик Глушко, стремятся к максимальному использованию энергии топлива и, как следствие, предельно возможному удельному импульсу. Так как максимальный удельный импульс можно получить лишь при повышении расширения продуктов сгорания в сопле, все разработки ведутся на поиски идеальной топливной смеси.

Ракеты как тип вооружения существуют с очень давних пор. Пионерами в этом деле были китайцы, о чем упоминается в гимне Поднебесной начала XIX века. «Красные блики ракет» - вот так в нем поется. Заряжали их порохом, изобретенным, как известно, в том же Китае. Но, чтобы «красные блики» заблистали, а на головы врагов обрушились огненные стрелы, нужны были ракетные двигатели, пусть и простейшие. Всем известно, что порох взрывается, а для полета необходимо интенсивное горение с направленным газовыделением. Так что состав горючего пришлось менять. Если в обычной взрывчатке соотношение ингредиентов составляет 75% нитратов, 15% углерода и 10% серы, то ракетные двигатели содержали 72% нитратов, 24% углерода и 4% серы.

В современных твердотопливных ракетах и ускорителях в качестве топлива используются более сложные смеси, но принцип остался все тот же, древнекитайский. Его достоинства несомненны. надежность, высокая быстрота инициации, относительная дешевизна и удобство эксплуатации. Для того чтобы снаряд стартовал, достаточно воспламенить твердую горючую смесь, обеспечить приток воздуха - и все, он полетел.

Однако есть у такой проверенной и надежной технологии свои недостатки. Во-первых, инициировав горение топлива, его уже невозможно остановить, как и поменять режим горения. Во-вторых, необходим кислород, а в условиях разреженного или безвоздушного пространства его нет. В-третьих, горение все равно проистекает слишком быстро.

Выход, который искали в течение долгих лет ученые во многих странах, наконец, нашелся. Д-р Роберт Годдард в 1926 году испытал первый жидкостный ракетный двигатель. В качестве горючего он использовал бензин, смешиваемый с жидким кислородом. Для того чтобы система работала устойчиво в течение хотя бы двух с половиной секунд, Годдарду пришлось решить ряд технических проблем, связанных с насосным нагнетанием реагентов, системой охлаждения и

Принцип, по которому построены все жидкостные ракетные двигатели, крайне прост. Внутри корпуса расположены два бака. Из одного из них через смесительную головку окислитель подается в камеру разложения, где в присутствии катализатора топливо, поступающее из второго бака, переходит в газообразное состояние. Происходит раскаленный газ проходит сначала сужающуюся дозвуковую зону сопла, а затем расширяющуюся сверхзвуковую, куда также подается горючее. В реальности все намного сложнее, дюза требует охлаждения, а режимы подачи - высокой степени стабильности. Современные ракетные двигатели в качестве топлива могут питаться водородом, окислителем является кислород. Эта смесь крайне взрывоопасна, и малейшее нарушение режима работы любой системы приводит к аварии или катастрофе. Компонентами горючего также могут быть и другие вещества, не менее опасные:

Керосин и - они использовались на первом этапе программы носителей "Сатурн V" в программе " Аполлон";

Спирт и жидкий кислород - были задействованы в немецких ракетах V2 и советских носителях «Восток»;

Азотный тетраоксид - монометил - гидразин - использовались в двигателях «Кассини».

Несмотря на сложность конструкции, жидкостные ракетные двигатели являются основным средством доставки космических грузов. Они используются и в межконтинентальных Режимы их работы поддаются точному регулированию, современные технологии позволяют автоматизировать процессы, протекающие в их агрегатах и узлах.

Однако ракетные двигатели на твердом топливе также не утратили своего значения. Они применяются в космической технике как вспомогательные. Велико их значение в модулях торможения и спасения.

На прошлой неделе я описывал устройство и принцип работы всех применяемых в космонавтике химических ракетных двигателей, в том числе и жидкостный ракетный двигатель (ЖРД). Для понимания принципа работы я привел простейшую схему:

На ней все до банальности просто: трубы с компонентами топлива входят в камеру сгорания, где топливо горит, а продукты сгорания выбрасываются через сопло назад, толкая двигатель вперед.

Так как же такая простая схема на деле превращается в такое сложное переплетение всяких трубок, проводов и устройств?

Начнем с того, что компоненты топлива в камеру сгорания надо как-то подавать. Самый простой способ - подать в баки с горючим и окислителем сжатый газ, чтобы его давление вытесняло из баков жидкость в камеру сгорания.

При всей своей простоте у вытеснительной подачи есть серьезный недостаток: давление газа наддува должно быть выше рабочего давления в камере сгорания, а там ведь десятки, а то и сотни атмосфер. Для реализации такой схемы придется делать баки очень прочными, чтобы они выдержали такое чудовищное давление, а это значит, что их стенки будут очень толстыми и тяжелыми. Масса - враг номер один в ракетно-космической технике, поэтому такое решение не годится. На практике вытеснительная система подачи применяется в двигателях с рабочим давлением в камере сгорания меньше 10 атмосфер. Это могут быть двигатели малой тяги для ориентации космического аппарата и маневрирования.

Для маршевых двигателей ракетных ступеней применяют такую схему подачи топлива, где компоненты топлива под действием небольшого давления газа наддува поступают в насосы, которые в свою очередь за счет вращения крыльчаток (как обычная водяная помпа, только прочнее, мощнее и тяжелее) подают жидкости в камеру сгорания под большим давлением.

Крыльчатки насосов должны вращаться с огромной скоростью, чтобы поддерживать давление в сотни атмосфер, поэтому для их привода нужно что-то посильнее обычного электромотора. Таким приводом служит турбина - такая же крыльчатка, которая вращается под действием проходящего через нее рабочего газа. Эта крыльчатка находится на одном валу с крыльчатками насосов для горючего и окислителя, и вся конструкция называется турбонасосный агрегат (ТНА).

Но откуда берется рабочий газ? Его производит специальное устройство - газогенератор . По сути это маленький однокомпонентный ЖРД, только вместо сопла из его рабочей камеры выходит труба, подающая так называемый парогаз (смесь кислорода и раскаленного водяного пара) в турбину ТНА. После турбины отработанный парогаз выбрасывается наружу через специальный патрубок. Таким образом у нас в схеме появился бак с перекисью водорода, газогенератор, ТНА и трубопроводы, соединяющие все это добро:

Также не следует забывать про вентили, которыми автоматика управляет потоками жидкостей и газов в трубах. К каждому такому вентилю идут провода, что вносит свой вклад в этот клубок.

В более мощных двигателях в газогенератор подаются те же компоненты топлива, которые используются в основной камере сгорания. В этом случае бак с перекисью не нужен, но из основных баков выходят дополнительные трубы, а на валу ТНА появляются насосы для подачи жидкостей в газогенератор. Для запуска этой системы приходится применять пиротехнические шашки для первоначальной раскрутки ТНА.

На этом видео стендовых испытаний двигателя на 15-й секунде хорошо видно, как из патрубка рядом с соплом выбрасывается отработанный парогаз:

Двигатели, где газ после ТНА выбрасывается наружу, называются ЖРД открытого цикла. В таких двигателях можно добиваться большего давления в камере сгорания, а его ТНА меньше подвержен износу, чем в ЖРД закрытого цикла, в которых газ подается в сопло, где дожигается, принимая участие в создании тяги. ЖРД закрытого цикла обладают большим коэффициентом полезного действия (надеюсь, помните, что это такое из школьной физики? ;)).

В большинстве космических ракет используются топливные пары, в которых один или оба компонента имеют очень низкую температуру кипения (жидкий кислород и жидкий водород). Пока ракета стоит на старте, эти криогенные жидкости в баках кипят и повышают давление. Чтобы баки не разорвало, их нужно дренировать. Дренаж - это сброс в атмосферу газов, образующихся при кипении криогенных жидкостей. Для этого баки с этими жидкостями оснащаются специальной трубой с вентилем, выходящей из корпуса ракеты наружу.

На этом видео на 19.25 виден туман, идущий от ракеты сверху справа. Это дренаж кислорода. Водород при дренировании надо отводить подальше, чтобы он не образовывал с кислородом взрывоопасную смесь, поэтому его сброс виден а мачте за ракетой.

Вот, вроде бы, получили мы рабочую схему ЖРД, но только вот проблема: проработает такая схема не больше нескольких секунд, а потом камера сгорания и сопло расплавятся. Уж слишком там горячо. Значит стенки камеры сгорания и сопла надо охлаждать. Для этого применяют два способа: жидкостное охлаждение и паровую завесу.

Для осуществления первого способа стенки камеры сгорания и сопла пронизаны множеством каналов, по которым течет горючее перед тем, как попасть внутрь камеры сгорания. Система работает по принципу холодильника самогонного аппарата.

Паровая завеса - это слой паров горючего, отделяющий горящую топливную смесь от стенок камеры сгорания. Образуется он при впрыске некоторого количества горючего через специальные форсунки в стенках камеры сгорания и корпуса двигателя:

В этом видео, посвященном двигателю F-1 ракеты Сатурн-5, с 49-й секунды видно между срезом сопла и ярким пламенем некую темную область. Это и есть завеса, защищающая сопло от адского жара потока газов.

Таким образом схема ЖРД из первоначальной простоты превратилась в это:

Также стоит сказать пару слов о строении головки камеры сгорания. На этой фотографии представлена головка камеры в разрезе. Видно, что у нее довольно сложное строение.

Дело в том, что для достижения надежного зажигания и стабильного горения нужно хорошо перемешать компоненты топлива, причем, в нужной пропорции. Для этого применяются специальные схемы расположения форсунок:

Кружочками отмечены форсунки подачи окислителя, точками - горючего.
а) Шахматная схема подачи. Применяется для топливных пар, в которых горючее и окислитель смешиваются примерно один к одному.
б) Сотовая схема подачи. Самая эффективная: каждая форсунка подачи горючего окружена форсунками подачи окислителя.
в) Концентрическая схема подачи.
Обратите внимание, что во всех трех схемах внешнее кольцо форсунок подает только горючее. Это нужно для предотвращения коррозии стенок камеры сгорания под действием окислителя.

Сами форсунки тоже имеют сложную конструкцию. Например, вот такая центробежная форсунка:

В некоторые форсунки вставлен шнек - устройство наподобие винта в мясорубке. Все эти хитрости нужны для одной цели: максимально приблизить зону смешивания компонентов топлива к головке камеры сгорания, чтобы сделать камеру меньше и легче.

Теперь нам осталось поговорить о системах зажигания. Тут все достаточно просто: внутри камеры сгорания помещается некое устройство, дающее огонь. Таким устройством может быть пороховая шашка, электродуговой разрядник, газовая горелка наподобие сварочной. В последнее время проводятся эксперименты по разработке лазерных систем. В ракетах Союз пошли по совсем простому пути: пиротехнические шашки поместили в камеры сгорания на обычных деревянных палках:

А для топливной пары НДМГ+АТ (несимметричный диметилгидразин + азотный тетраоксид), используемой на ракетах Протон, системы зажигания и вовсе не нужны, так как компоненты топлива самовоспламеняются при смешивании.

И последнее, о чем мы сегодня поговорим, - запуск ЖРД в невесомости.

Это серьезная проблема, так как в невесомости жидкость в баках перемешивается с газом, слипается в пузыри и не поступает в трубопроводы. Советские конструкторы первых ракет, оснащенных третьей ступенью, пошли в обход этой проблемы: двигатель третьей ступени запускался до того, как останавливался двигатель второй ступени. Для выхода газовой струи двигателя предназначалась решетчатая конструкция между второй и третьей ступенями. Наглядно этот процесс показан на времени 11.25 здесь:

Но все время так не поделаешь: для баллистической схемы выведения и для орбитальных маневров все-таки придется запускать ЖРД в невесомости.

Самый простой вариант: заключить жидкость в баке в полимерный мешок, который предотвратит перемешивание жидкости с газом:

Но такой способ не годится для баков большого объема: слишком непрочен мешок. Поэтому система с мешком применяется для запуска двигателей малой тяги, которые работают несколько секунд, создавая ускорение, достаточное для осаживания жидкостей в больших баках.

На этом видео с самого начала виден этот процесс: три газовые струи исходят как раз от двигателей малой тяги, а через несколько секунд происходит зажигание основного двигателя.

Вот такие инженерные хитрости приходится применять для решения всех проблем, связанных с работой ЖРД. Расплатой за это становится сложность конструкции двигателя, превращающегося в такой клубок, что без бутылки и не разберешься.

Россия располагает развитыми стратегическими ядерными силами, основным компонентом которых являются межконтинентальные баллистические ракеты разных типов, используемые в составе стационарных или подвижных грунтовых комплексов, а также на подводных лодках. При определенном сходстве на уровне базовых идей и решений, изделия этого класса имеют заметные различия. В частности, используются ракетные двигатели разных типов и классов, соответствующие тем или иным требованиям заказчика.

С точки зрения особенностей силовых установок все устаревшие, актуальные и перспективные МБР можно разделить на два основных класса. Такое может оснащаться жидкостными ракетными двигателями (ЖРД) или двигателями на твердом топливе (РДТТ). Оба класса имеют свои преимущества, благодаря чему находят применение в различных проектах, и пока ни один из них не смог вытеснить из своей области «конкурента». Вопрос силовых установок представляет большой интерес и стоит отдельного рассмотрения.

и теория

Известно, что первые ракеты, появившиеся много веков назад, оснащались твердотопливными двигателями на самом простом горючем. Такая силовая установка сохраняла свои позиции до прошлого века, когда были созданы первые системы на жидком топливе. В дальнейшем развитие двух классов двигателей шло параллельно, хотя ЖРД или РДТТ время от времени сменяли друг друга в качестве лидеров отрасли.

Пуск ракеты УР-100Н УТТХ с жидкостным двигателем. Фото Rbase.new-factoria.ru

Первые дальнобойные ракеты, развитие которых привело к появлению межконтинентальных комплексов, оснащались жидкостными двигателями. В середине прошлого века именно ЖРД позволяли получить желаемые характеристики при использовании доступных материалов и технологий. Позже специалисты ведущих стран приступили к разработке новых сортов баллиститных порохов и смесового топлива, результатом чего стало появление РДТТ, пригодных для использования на МБР.

К настоящему времени в стратегических ядерных силах разных стран получили распространение как жидкостные, так и твердотопливные ракеты. Любопытно, что российские МБР комплектуются силовыми установками обоих классов, тогда как Соединенные Штаты еще несколько десятилетий назад отказались от жидкостных двигателей в пользу твердотопливных. Несмотря на такую разницу подходов, обеим странам удалось построить ракетные группировки желаемого облика с требуемыми возможностями.

В области межконтинентальных ракет первыми стали жидкостные двигатели. Такие изделия имеют ряд преимуществ. Жидкое горючее позволяет получить более высокий удельный импульс, а конструкция двигателя допускает изменение тяги сравнительно простыми способами. Большую часть объемов ракеты с ЖРД занимают баки топлива и окислителя, что определенным образом снижает требования к прочности корпуса и упрощает его производство.

Одновременно с этим ЖРД и ракеты, оснащенные ими, не лишены недостатков. В первую очередь, такой двигатель отличается высочайшей сложностью производства и эксплуатации, негативно сказывающейся на стоимости изделия. МБР первых моделей имели недостаток в виде сложности подготовки к запуску. Заправка топлива и окислителя осуществлялась непосредственно перед стартом, а кроме того, в некоторых случаях была связана с некоторыми рисками. Все это негативным образом сказывалось на боевых качествах ракетного комплекса.


Жидкостные ракеты Р-36М в транспортно-пусковых контейнерах. Фото Rbase.new-factoria.ru

Ракетный двигатель твердого топлива и построенная на его основе ракета имеет положительные стороны и преимущества перед жидкостной системой. Главный плюс – меньшая стоимость производства и упрощенная конструкция. Также у РДТТ отсутствуют риски утечек агрессивного топлива, а кроме того, они отличаются возможностью более длительного хранения. На активном участке полета МБР твердотопливный двигатель обеспечивает лучшую динамику разгона, сокращая вероятность успешного перехвата.

Твердотопливный двигатель проигрывает жидкостному по своему удельному импульсу. Поскольку горение заряда твердого топлива почти не поддается контролю, управление тягой двигателя, остановка или повторный запуск требуют особых технических средств, отличающихся сложностью. Корпус РДТТ выполняет функции камеры сгорания и потому должен иметь соответствующую прочность, что предъявляет особые требования к используемым агрегатам, а также негативно сказывается на сложности и стоимости производства.

ЖРД, РДТТ и СЯС

В настоящее время на вооружении стратегических ядерных сил России состоит около десятка МБР разных классов, предназначенных для решения актуальных боевых задач. Ракетные войска стратегического назначения (РВСН) эксплуатируют ракеты пяти типов и ожидают появления еще двух новых комплексов. Такое же количество ракетных комплексов используется на подводных подлодках ВМФ, однако в интересах морской компоненты «ядерной триады» пока не разрабатываются принципиально новые ракеты.

Несмотря на свой солидный возраст, в войсках все еще остаются ракеты УР-100Н УТТХ и Р-36М/М2. Подобные МБР тяжелого класса имеют в своем составе несколько ступеней с собственными жидкостными двигателями. При большой массе (более 100 т у УР-100Н УТТХ и около 200 т у Р-36М/М2) ракеты двух типов несут значительный запас горючего, обеспечивающий отправку тяжелой головной части на дальность не менее 10 тыс. км.

Общий вид ракеты РС-28 "Сармат". Рисунок "Государственный ракетный центр" / makeyev.ru

С конца пятидесятых годов в нашей стране изучалась проблематика применения РДТТ на перспективных МБР. Первые реальные результаты в этой области были получены к началу семидесятых. В последние десятилетия такое направление получило новый толчок, благодаря чему появилось целое семейство твердотопливных ракет, представляющих собой последовательное развитие общих идей и решений на основе современных технологий.

В настоящее время РВСН располагает ракетами РТ-2ПМ «Тополь», РТ-2ПМ2 «Тополь-М» и РС-24 «Ярс». При этом все подобные ракеты эксплуатируются как с шахтными, так и с подвижными грунтовыми пусковыми установками. Ракеты трех типов, созданные на основе общих идей, построены по трехступенчатой схеме и оснащаются твердотопливными двигателями. Выполнив требования заказчика, авторы проектов сумели минимизировать габариты и массу готовых ракет.

Ракеты комплексов РТ-2ПМ, РТ-2ПМ2 и РС-24 имеют длину не более 22,5-23 м при максимальном диаметре менее 2 м. Стартовая масса изделий – порядка 45-50 т. Забрасываемый вес, в зависимости от типа изделия, достигает 1-1,5 т. Ракеты линейки «Тополь» комплектуются моноблочной головной частью, тогда как «Ярс», по известным данным, несет несколько отдельных боевых блоков. Дальность полета – не менее 12 тыс. км.

Нетрудно заметить, что при основных летных характеристиках на уровне более старых жидкостных ракет, твердотопливные «Тополи» и «Ярсы» отличаются меньшими габаритами и стартовым весом. Впрочем, при всем этом они несут меньшую полезную нагрузку.


Подвижный грунтовый комплекс "Тополь". Фото Минобороны РФ

В будущем на вооружение РВСН должны поступит несколько новых ракетных комплексов. Так, проект РС-26 «Рубеж», создававшийся в качестве варианта дальнейшего развития системы «Ярс», вновь предусматривает использование многоступенчатой схемы с РДТТ на всех ступенях. Ранее появлялась информация, согласно которой система «Рубеж» предназначается для замены устаревающих комплексов РТ-2ПМ «Тополь», что и сказалось на основных особенностях ее архитектуры. По основным техническим характеристикам «Рубеж» не должен значительно отличаться от «Тополя», хотя возможно применение иной полезной нагрузки.

Еще одна перспективная разработка – тяжелая МБР типа РС-28 «Сармат». По официальным данным, этот проект предусматривает создание трехступенчатой ракеты с жидкостными двигателями. Сообщалось, что ракета «Сармат» будет иметь длину порядка 30 м при стартовой массе свыше 100 т. Она сможет нести «традиционные» специальные боевые блоки или гиперзвуковую ударную систему нового типа. За счет применения ЖРД с достаточными характеристиками предполагается получить максимальную дальность полета на уровне 15-16 тыс. км.

В распоряжении военно-морского флота имеется несколько типов МБР с разными характеристиками и возможностями. Основу морской компоненты СЯС в настоящее время составляют баллистические ракеты подводных лодок семейства Р-29РМ: собственно Р-29РМ, Р-29РМУ1, Р-29РМУ2 «Синева» и Р-29РМУ2.1 «Лайнер». Кроме того, несколько лет назад в арсеналы попала новейшая ракета Р-30 «Булава». Насколько известно, сейчас российская промышленность разрабатывает несколько проектов модернизации ракет для подлодок, но о создании принципиально новых комплексов речи пока не идет.

В области отечественных МБР для подлодок наблюдаются тенденции, напоминающие о развитии «сухопутных» комплексов. Более старые изделия Р-29РМ и все варианты их модернизации имеют три ступени и оснащаются несколькими жидкостными двигателями. При помощи такой силовой установки ракета Р-29РМ способна доставить на дальность не менее 8300 км четыре или десять боевых блоков разной мощности общей массой 2,8 т. В проекте модернизации Р-29МР2 «Синева» предусматривалось использование новых систем навигации и управления. В зависимости от имеющейся боевой нагрузки, ракета длиной 14,8 м и массой 40,3 т способна лететь на дальность до 11,5 тыс. км.


Загрузка ракеты комплекса "Тополь-М" в шахтную пусковую установку. Фото Минобороны РФ

Более новый проект ракеты для подлодок Р-30 «Булава», наоборот, предусматривал использование твердотопливных двигателей на всех трех ступенях. Среди прочего, это позволило уменьшить длину ракеты до 12,1 м и сократить стартовый вес до 36,8 т. При этом изделие несет боевую нагрузку массой 1,15 т и доставляет ее на дальность до 8-9 тыс. км. Не так давно было объявлено о разработке новой модификации «Булавы», отличающейся иными габаритами и увеличенной массой, за счет чего удастся повысить боевую нагрузку.

Тенденции развития

Хорошо известно, что в последние десятилетия российское командование сделало ставку на разработку перспективных твердотопливных ракет. Результатом этого стало последовательное появление комплексов «Тополь» и «Тополь-М», а затем «Ярс» и «Рубеж», ракеты которых комплектуются РДТТ. ЖРД, в свою очередь, остаются только на сравнительно старых «сухопутных» ракетах, эксплуатация которых уже подходит к концу.

Впрочем, полный отказ от жидкостных МБР пока не планируется. В качестве замены для имеющихся УР-100Н УТТХ и Р-36М/М2 создается новое изделие РС-28 «Сармат» с аналогичной силовой установкой. Таким образом, жидкостные двигатели в обозримом будущем будут использоваться только на ракетах тяжелого класса, тогда как прочие комплексы будут оснащаться твердотопливными системами.

Ситуация с баллистическими ракетами подводных лодок выглядит похоже, но имеет некоторые отличия. В этой сфере так же сохраняется значительное число жидкостных ракет, но единственный новый проект предусматривает применение РДТТ. Дальнейшее развитие события можно предугадать, изучив имеющиеся планы военного ведомства: программа развития подводного флота явно указывает на то, какие ракеты имеют большое будущее, а какие со временем будут списаны.


Самоходная пусковая установка РС-24 "Ярс". Фото Vitalykuzmin.net

Более старые ракеты Р-29РМ и их последние модификации предназначаются для АПЛ проектов 667БДР и 667БДРМ, тогда как Р-30 разрабатывались для использования на новейших ракетоносцах проекта 955. Корабли семейства «667» постепенно вырабатывают свой ресурс и со временем будут списаны ввиду полного морального и физического устаревания. Вместе с ними, соответственно, флоту придется отказаться и от ракет семейства Р-29РМ, которые попросту останутся без носителей.

Первые ракетные подводные крейсеры проекта 955 «Борей» уже приняты в боевой состав ВМФ, а кроме того, продолжается строительство новых подводных лодок. Это означает, что в обозримом будущем флот получит значительную группировку носителей ракет «Булава». Служба «Бореев» будет продолжаться в течение нескольких десятилетий, и поэтому ракеты Р-30 будут оставаться в строю. Возможно создание новых модификаций такого оружия, способных дополнить, а затем и заменить МБР базовой версии. Так или иначе, изделия семейства Р-30 со временем заменят устаревающие ракеты линейки Р-29РМ в роли основы морской составляющей стратегических ядерных сил.

Плюсы и минусы

Разные классы ракетных двигателей, используемые на современных стратегических ракетах, имеют свои плюсы и минусы того или иного рода. Жидкостные и твердотопливные системы превосходят друг друга по одним параметрам, но проигрывают в других. Как следствие, заказчикам и конструкторам приходится выбирать тип силовой установки в соответствии с имеющимися требованиями.

Условный ЖРД отличается от РДТТ более высокими показателями удельного импульса и иными преимуществами, что позволяет нарастить полезную нагрузку. Одновременно с этим соответствующий запас жидкого горючего и окислителя приводит к росту габаритов и массы изделия. Таким образом, жидкостная ракета оказывается оптимальным решением в контексте развертывания большого числа шахтных пусковых установок. На практике это означает, что в настоящее время значительная часть пусковых шахт занята ракетами Р-36М/М2 и УР-100Н УТТХ, а в будущем их заменят перспективные РС-28 «Сармат».

Ракеты типа «Тополь», «Тополь-М» и «Ярс» используются как с шахтными установками, так и в составе подвижных грунтовых комплексов. Последняя возможность обеспечена, в первую очередь, малым стартовым весом ракет. Изделие массой не более 50 т можно разместить на специальном многоосном шасси, чего не сделаешь с существующими или гипотетическими жидкостными ракетами. Новый комплекс РС-26 «Рубеж», рассматриваемый в качестве замены для «Тополя», так же основывается на похожих идеях.


Ракета подводных лодок Р-29РМ. Рисунок "Государственный ракетный центр" / makeyev.ru

Характерная черта ракет с РДТТ в виде сокращения габаритов и массы также имеет значение в контексте вооружений флота. Ракета для подлодки должна иметь минимальные размеры. Соотношение габаритов и летных характеристик ракет Р-29РМ и Р-30 показывает, как именно можно использовать подобные преимущества на практике. Так, в отличие от своих предшественников, новейшие АПЛ проекта 955 не нуждаются в крупной надстройке, прикрывающей верхнюю часть пусковых установок.

Впрочем, сокращение массы и габаритов имеет свою цену. Более легкие твердотопливные ракеты отличаются от других отечественных МБР меньшей боевой нагрузкой. Кроме того, специфика РДТТ приводит к менее высокому весовому совершенству в сравнении с жидкостными ракетами. Однако, по всей видимости, подобные проблемы решаются путем создания более эффективных боевых частей и систем управления.

Несмотря на длительные научные и конструкторские работы, а также массу споров, условное противостояние жидкостных и твердотопливных двигателей пока не закончилось безусловной победой одного из «конкурентов». Наоборот, российские военные и инженеры пришли к взвешенному выводу. Двигатели разных типов используются в тех сферах, где могут показать наилучшие результаты. Таким образом, легкие ракеты для сухопутных мобильных комплексов и подводных лодок получают РДТТ, тогда как тяжелые ракет с шахтным пуском и сейчас, и в будущем должны комплектоваться жидкостными установками.

В существующей ситуации, с учетом имеющихся возможностей и перспектив, подобный подход выглядит наиболее логичным и удачным. Он позволяет на практике получить максимальные результаты при заметном сокращении влияния негативных факторов. Вполне возможно, что такая идеология будет сохраняться и в будущем, в том числе и с применением перспективных технологий. Это означает, что в ближайшем и в отдаленном будущем российские стратегические ядерные силы смогут получать современные межконтинентальные баллистические ракеты с максимально возможными характеристиками и боевыми качествами, прямо влияющими на эффективность сдерживания и безопасность страны.

По материалам сайтов:
http://ria.ru/
http://tass.ru/
http://interfax.ru/
http://flot.com/
http://rbase.new-factoria.ru/
http://kapyar.ru/
http://missiles.ru/
http://makeyev.ru/

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЖРД) - ракетный двигатель , работающий на жидком ракетном топливе . Превращение топлива в реактивную газовую струю, создающую тягу, происходит в камере . В современных ЖРД используются как двухкомпонентные ракетные топлива , состоящие из окислителя и горючего, которые хранятся в отдельных баках, так и однокомпонентные ракетные топлива , являющиеся жидкостями, способными к каталитическому разложению. По роду используемого окислителя ЖРД бывают азотнокислотные, азоттетроксидные (окислитель - четырёхокись азота), кислородные, перекисьводородные, фторные и др. В зависимости от значения тяги различают ЖРД малой, средней и большой тяги. Условными границами между ними являются 10 кН и 250 кН (на ЛА устанавливались ЖРД с тягой от десятых долей Н до 8 МН). ЖРД характеризуются также удельным импульсом тяги , режимом работы, габаритами, удельной массой , давлением в камере сгорания, общим устройством и конструкцией основных агрегатов. ЖРД является основным типом космических двигателей и широко применяется также в высотных исследовательских ракетах, боевых баллистических ракетах дальнего действия, зенитных управляемых ракетах; ограниченно - в боевых ракетах других классов, на экспериментальных самолётах и т. д.

Основные проблемы при создании ЖРД : рациональный выбор топлива, удовлетворяющего энергетическим требованиям и условиям эксплуатации; организация рабочего процесса для достижения расчётного удельного импульса; обеспечение устойчивой работы на заданных режимах, без развитых низкочастотных и высокочастотных колебаний давления, вызывающих разрушительные вибрации двигателя; охлаждение ракетного двигателя, подверженного воздействию агрессивных продуктов сгорания при весьма высоких температурах (до 5000 К) и давлениях до многих десятков МПа (это воздействие усугубляется в некоторых случаях присутствием конденсированной фазы в сопле); подача топлива (криогенного, агрессивного и др.) при давлениях, доходящих для мощных двигателей до многих десятков МПа, и расходах до нескольких т/с; обеспечение минимальной массы агрегатов и двигателя в целом, работающих в весьма напряжённых режимах; достижение высокой надёжности.

ЖРД был предложен К. Э. Циолковским в 1903 году как двигатель для полёта в космос. Учёный разработал принципиальную схему ЖРД , указал наиболее выгодные ракетные топлива, исследовал вопросы устройства основных агрегатов. Практические работы по созданию ЖРД были начаты в 1921 году в США Р. Годдардом (R. Goddard). В 1922 году он впервые зарегистрировал тягу при испытании экспериментального ЖРД , а в 1926 году осуществил пуск небольшой жидкостной ракеты. В конце 20-х – начале 30-х гг. к разработке ЖРД приступили в Германии, СССР и других странах. В 1931 году были испытаны первые советские ЖРД ОРМ и ОРМ-1, созданные В. П. Глушко в Газодинамической лаборатории. В 1933 году испытана двигательная установка ОР-2 конструкции Ф. А. Цандера, а двигатель 10, созданный Группой изучения реактивного движения, обеспечил полёт жидкостной ракеты.

До начала 2-й мировой войны 1939-45 гг. в СССР и США появились опытные образцы ЖРД с тягой до нескольких кН, предназначенные для экспериментальных летательных аппаратов. Интенсивные работы в области ракетной техники, проводившиеся в Германии во время войны, вызвали появление разнообразных типов ЖРД боевого назначения, многие из которых производились серийно. Лучшими были ЖРД конструкции X. Вальтера (H. Walter) (в т.ч. ХВК 109-509А (HWK 109-509A)) и X. Зборовского (H. Zborowski), ЖРД зенитной управляемой ракеты «Вассерфаль» (Wasserfall) и баллистической ракеты Фау-2 (V-2). До 2-й половины 40-х гг. самыми крупными советскими ЖРД были Д-1-А-1100 и РД-1, разработанные Реактивным научно-исследовательским институтом. Первыми серийными советскими ЖРД стали двигатели РД-1 и РД-1ХЗ, созданные к концу войны в ГДЛ–ОКБ. Там же в 1947-53 гг. были разработаны первые в СССР мощные ЖРД : РД-100, РД-101, РД-103. В этот же период в США изготовлялся ЖРД с тягой ~ 350 кН для баллистической ракеты «Редстоун» (Redstone).

Дальнейшее развитие ЖРД и современное их состояние определила начатая в середине 50-х гг. в СССР и США разработка МБР и РН. Для их реализации потребовалось создать мощные, экономичные и компактные ЖРД . Первыми среди них были РД-107 и РД-108, с появлением которых тяга ЖРД увеличилась вдвое, тяга ДУ – в 10 раз. Удельный импульс ЖРД возрос почти на 30%, удельная масса снизилась более чем в 1,5 раза. Эти результаты стали возможны благодаря разработке принципиально новой конструкции ЖРД , позволившей перейти с топлива кислород - этиловый спирт на кислородно-керосиновое при одновременном увеличении давления в камере сгорания в 2–2,5 раза.

С начала 60-х гг. на ракеты-носители (РН) начали также применяться ЖРД , работающие на высококипящих топливах. Первым из них был РД-214. Большое значение для развития космонавтики имело создание в середине 60-х гг. кислородно-водородных ЖРД (предназначены для верхних ступеней РН), которые по удельному импульсу превосходят кислородно-керосиновые на 30%. Т.к. кислородно-водородное топливо по сравнению с кислородно-керосиновым требует при той же массе втрое большего объёма для своего размещения, а баки водорода приходится снабжать теплоизоляцией, то число Циолковского получается для кислородно-водородного топлива на 40% большим. Этот недостаток с избытком компенсируется высокой экономичностью кислородно-водородных ЖРД . При равной стартовой массе РН они способны вывести на околоземную орбиту втрое больший полезный груз, чем кислородно-керосиновые ЖРД .

Осваивая всё более эффективные топлива, конструкторы ЖРД стремились одновременно к тому, чтобы преобразовать химическую энергию топлив в кинетическую энергию реактивной струи с возможно большим КПД . С этой целью была разработана схема ЖРД с дожиганием генераторного газа в камере. Для реализации этой схемы потребовалось создать камеры, работающие в условиях высоких механических и тепловых нагрузок, а также компактные агрегаты питания большой мощности. ЖРД с дожиганием с середины 60-х гг. широко применяются на РН, в частности используются на всех ступенях РН «Протон».

Наряду с мощными космическими ЖРД созданы многочисленные ЖРД средней и малой тяги. Безотказная работа двигателей космических аппаратов (КА) обеспечивается в большой степени использованием высококипящих однокомпонентных и самовоспламеняющихся ракетных топлив , хранение которых на борту КА не вызывает трудностей. ДУ с ЖРД на однокомпонентном топливе проще по устройству, но имеют существенно меньший удельный импульс. К середине 60-х гг. во вспомогательных ЖРД получила наибольшее применение перекись водорода, которая затем начала вытесняться гидразином и двухкомпонентными топливами. Использование гидразина позволило повысить удельный импульс ЖРД на однокомпонентном топливе примерно на 40%.

Большинство советских космических ЖРД создано в ГДЛ-ОКБ В. П. Глушко, ОКБ А. М. Исаева и ОКБ С. А. Косберга. Двигатели РД-107, РД-108, РД-214, РД-216, РД-253 и другие конструкции ГДЛ-ОКБ обеспечили старт всех советских РН; на вторых ступенях ряда РН также установлены ЖРД конструкции ГДЛ-ОКБ: РД-119, РД-219 и др. Двигатели ОКБ Косберга установлены на верхних ступенях РН «Восток», «Восход» («Союз») и «Протон». Двигатели ОКБ Исаева используются в основном на искусственных спутниках Земли (ИСЗ), межпланетных КА и космических кораблях (КК) (КРД-61, КДУ-414, ТДУ-1, КТДУ-5А и др.).

Крупнейшие из зарубежных организаций, занятых разработкой ЖРД , находятся в США. Ведущей является фирма «Рокетдайн» (Rocketdyne), которой созданы ЖРД Джей-2 (J-2), ЛР-79-НА (LR-79-NA), ЛР-89-НА (LR-89-NA), ЛР-105-НА (LR-105-NA), РС-2701 (RS-2701), Эйч-1 (H-1), Ф-1 (F-1), ССМЭ (SSME), многочисленные ЖРД средней и малой тяги на высококипящем двухкомпонентном топливе. Большинство упомянутых мощных ЖРД создано под руководством С. Гофмана (S. Hoffman). Фирмой «Аэроджет Дженерал Корпорейшн» (Aerojet General Corporation) создан ряд ЖРД на высококипящем двухкомпонентном топливе, в т.ч. ЖРД ЛР-87-АДжей-5 (LR-87-AJ-5) и ЛР-91-АДжей-5 (LR-91-AJ-5), серия ЖРД средней тяги АДжей-10 (AJ-10), включающая АДжей-10-137 (AJ-10-137) и АДжей-10-138 (AJ-10-138). Фирма «Пратт энд Уитни» (Pratt & Whitney) создала первый в мире кислородно-водородный ЖРД РЛ-10 (RL-10), фирма «Белл Aэроспейс Tекстрон» (Bell Aerospace Textron) - многочисленные вспомогательные ЖРД , а также ЖРД средней тяги ЛР-81-БА-9 (LR-81-BA-9), фирма «ТРВ» - ЖРД средней тяги ЛМДЭ (LMDE), фирма «Марквардт» (Marquardt)- ряд ЖРД на высококипящем двухкомпонентном топливе для КК и межпланетных КА. В США создано несколько десятков типов гидразиновых ЖРД (в полёте испытаны ЖРД с тягой от 0,4 Н до 2,7 кН). В числе разработчиков ЖРД для межпланетных КА - фирма «Риэкшен моторс» (Reaction Motors), создавшая также мощный ЖРД ЛР-99-РМ-1 (LR-99-RM-1). Наиболее известные из западноевропейских ЖРД - АшМ-7 (HM-7), «Валуа» (Valois), «Вексен» (Vexen), «Викинг» (Viking, Франция), «Гамма-2» (Gamma), «Гамма-8», РЗет-2 (RZ-2, Великобритания). В Западной Европе также разрабатываются ЖРД малой тяги на двух- и однокомпонентном топливах для ИСЗ. Япония производит по лицензии американские ЖРД ЛР-79-НА для собственного варианта РН «Дельта» (Delta). Для одной из ступеней этой РН фирмой «Мицубиси» (Mitsubishi) разработан ЖРД на высококипящем топливе тягой 53 кН с вытеснительной подачей. На стендах испытаны кислородно-водородные ЖРД тягой до 0,1 МН с насосной подачей. В китайских РН используются ЖРД тягой 0,7 МН с насосной подачей высококипящего топлива.

Космические ЖРД разнообразны по устройству и характеристикам. Наибольшее различие существует между мощными ЖРД , обеспечивающими разгон РН, и ЖРД реактивных систем управления КА. Первые работают на двухкомпонентном топливе. Тяга этих ЖРД достигает 8 МН (при суммарной тяге ДУ до 40 МН), размеры - несколько метров, а масса - несколько тонн. Они рассчитаны обычно на однократное включение (кроме некоторых ЖРД верхних ступеней РН) и работу в течение 2-10 мин при изменении параметров в узких пределах. К этим ЖРД предъявляется требование обеспечивать высокий удельный импульс при малых габаритах и массе. Поэтому в них применяется насосная подача топлива в камеру (исключение составляют ЖРД «Вексен» и «Валуа»). С этой целью в ЖРД предусматривается турбонасосный агрегат (ТНА) и газогенератор (ГГ). ТНА содержит высоконапорные топливные насосы (обычно осецентробежные) и приводящую их в действие турбину, которая вращается газом, получаемым в ГГ. В ЖРД без дожигания отработанный в турбине генераторный газ сбрасывается в выхлопной патрубок, рулевое сопло или сопло камеры. В ЖРД с дожиганием этот газ поступает в камеру для дожигания с остальной частью топлива.

В ЖРД без дожигания через ГГ может расходоваться 2-3% всего топлива, и целесообразный предел давления в камере сгорания ограничен значением ~ 10 МПа, что связано с потерями удельного импульса на привод ТНА: для ЖРД в целом этот параметр ниже, чем для камеры, т.к. дополнительная тяга, создаваемая истечением отработанного генераторного газа, невелика. Причиной тому являются малые значения давления и температуры этого газа. Для ЖРД РД-216 они составляют, например, 0,12 МПа и 870 К соответственно; при этом потери удельного импульса достигают 1,5% (свыше 40 м/с). С повышением давления в камере сгорания наблюдается увеличение её удельного импульса, но для этого приходится увеличивать расход генераторного газа (для обеспечения потребной мощности топливных насосов). С некоторого момента всё возрастающие потери удельного импульса на привод ТНА уравновешивают, а затем превышают прирост удельного импульса камеры. В ЖРД с дожиганием через ГГ расходуется значит, часть всего топлива (20-80%), однако привод ТНА осуществляется без ухудшения экономичности ЖРД (значения удельного импульса камеры и ЖРД совпадают). В камерах сгорания этих ЖРД удаётся реализовать давление 15-25 МПа (давление в ГГ приблизительно вдвое больше). Для мощных ЖРД с насосной подачей топлива удельный импульс достигает 3430 м/с при использовании кислородно-керосинового топлива и 4500 м/с при использовании кислородно-водородного; удельная масса ЖРД может составлять всего 0,75-0,85 г/Н.

Кроме камеры, ТНА и ГГ, мощные ЖРД содержат топливные трубопроводы с сильфонными шлангами и компенсаторами угловых и линейных перемещений, облегчающими сборку и установку ЖРД , а также обеспечивающими разгрузку от термических напряжений и позволяющими производить отклонение камеры с целью управления движением РН; трубопроводы генераторного газа и дренажа топлива; устройства и системы запуска ракетного двигателя ; агрегаты автоматики с электроприводами, пневмо-, пиро- и гидросистемами и устройствами для управления работой ЖРД (в т.ч. для его дросселирования ); агрегаты системы аварийной защиты; датчики системы телеметрических измерений; электрические кабельные стволы для подачи сигналов на агрегаты автоматики и приёма сигналов от телеметрических датчиков; теплоизоляционные чехлы и экраны, обеспечивающие надлежащую температуру в двигательном отсеке и исключающие перегрев либо переохлаждение отдельных элементов; элементы системы наддува баков (теплообменники, смесители и т. п.); шарнирный подвес или раму для крепления ЖРД к РН (рама, воспринимающая тягу, является одновременно элементом, на котором собирается двигатель); нередко - рулевые камеры и сопла с системами, обеспечивающими их работу; элементы общей сборки (кронштейны, крепёжные детали, уплотнения). По устройству различают блочные жидкостные ракетные двигатели , одно- и многокамерные (с питанием нескольких камер от одного ТНА).

ЖРД реактивных систем управления относятся к двигателям малой тяги, их масса обычно не достигает 10 кг, а высота 0,5 м; масса многих ЖРД не превышает 0,5 кг, и они умещаются на ладони. Характерной особенностью указанных ЖРД является работа в импульсном режиме (за несколько лет функционирования КА суммарное число включений ЖРД может достичь нескольких сотен тысяч, а наработка нескольких часов). Эти ЖРД представляют собой одностенные камеры, снабжённые пуско-отсечными топливными клапанами, и рассчитаны на вытеснительную подачу высококипящего топлива (двухкомпонентного самовоспламеняющегося или однокомпонентного). Давление в камерах сгорания указанных ЖРД , определяемое главным образом давлением наддува баков ДУ и гидравлическим сопротивлением питающих магистралей, находится в диапазоне 0,7-2,3 МПа. В том случае, когда газ для наддува топливных баков размещён в самих баках, его давление по мере расходования топлива снижается, что приводит к ухудшению характеристик ЖРД . Сравнительно высокий удельный импульс ЖРД (до 3050 м/с для двухкомпонентного топлива и до 2350 м/с для гидразина) достигается за счёт относительно больших размеров реактивного сопла, что обеспечивает расширение продуктов сгорания до очень малого давления. Несмотря на небольшую абсолютную массу ЖРД реактивных систем управления, их удельная масса велика (при уменьшении тяги от 500 до 1 Н возрастает приблизительно с 5 до 150 г/Н).

ЖРД космических аппаратов занимают по своим характеристикам промежуточное положение между мощными ЖРД ракет-носителей и ЖРД реактивных систем управления. Их тяга охватывает диапазон от сотен Н до десятков кН и может быть как нерегулируемой, так и регулируемой; они могут непрерывно работать десятые доли секунд и несколько тысяч секунд при числе включений от 1 до нескольких десятков. В указанных ЖРД применяются те же типы топлив, что и в ЖРД реактивных систем управления (однокомпонентное топливо используется только в ЖРД малой тяги).

В планах дальнейшего освоения космоса ЖРД отводится большая роль. Мощные ЖРД , рассчитанные на экономичное использование эффективных топлив, по-прежнему находятся в центре внимания. К 1981 году создан кислородно-водородный ЖРД с тягой свыше 2 МН, предназначенный для разгона ЛА от старта до вывода на околоземную орбиту. Благодаря достижениям в области криогенной техники и теплоизоляционных материалов становится целесообразным создание ЖРД на низкокипящих топливах, развивающих высокий удельный импульс, для использования в КА, функционирующих в космосе. Прогресс в разработке ЖРД с тягой до нескольких десятков кН, работающих на топливах, содержащих фтор и его производные (см., например, РД-301), делает реальным применение фторных ЖРД в разгонных блоках РН и в автоматических КА, которые будут совершать полёты к планетам. При стендовых испытаниях в 1977 году экспериментального кислородно-водородного ЖРД (тяга 0,1 МН), разрабатываемого для этих целей, достигнут удельный импульс 4690 м/с. Проводятся экспериментальные исследования различных проблем создания ЖРД на металлсодержащем топливе .

Наряду с освоением для ЖРД новых топлив ведутся поиски технических принципов, обеспечивающих дальнейшее увеличение КПД и уменьшение габаритов и массы ЖРД . Улучшение параметров, достигаемое путём увеличения давления в камере, с ростом давления становится всё менее ощутимым, а трудности создания ЖРД всё более возрастают. Увеличение указанного параметра свыше 25-30 МПа является малоэффективным и трудно реализуемым. Проявляется интерес к ЖРД , снабжённым соплами с центральным телом . С целью снижения стоимости запуска полезных грузов разработаны ЖРД (для КА многократного использования), рассчитанные на несколько десятков полётов и ресурс в несколько часов при малом объёме межполётных регламентных работ.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Презентация на тему: Невербальные средства общения Презентация на тему: Невербальные средства общения Турагент: бесплатные путешествия или нервная работа? Турагент: бесплатные путешествия или нервная работа? Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений