Цели кластеризации для выработки рекомендаций. Кластерный анализ: его метод и сфера применения Кластерный анализ в социологическом исследовании

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

КЛАСТЕРНЫЙ АНАЛИЗ В ЗАДАЧАХ СОЦИАЛЬНО-ЭКОНОМИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

Введение в кластерный анализ.

При анализе и прогнозировании социально-экономических явлений исследователь довольно часто сталкивается с многомерностью их описания. Это происходит при решении задачи сегментирования рынка, построении типологии стран по достаточно большому числу показателей, прогнозирования конъюнктуры рынка отдельных товаров, изучении и прогнозировании экономической депрессии и многих других проблем.

Методы многомерного анализа - наиболее действенный количественный инструмент исследования социально-экономических процессов, описываемых большим числом характеристик. К ним относятся кластерный анализ, таксономия, распознавание образов, факторный анализ.

Кластерный анализ наиболее ярко отражает черты многомерного анализа в классификации, факторный анализ – в исследовании связи.

Иногда подход кластерного анализа называют в литературе численной таксономией, численной классификацией, распознаванием с самообучением и т.д.

Первое применение кластерный анализ нашел в социологии. Название кластерный анализ происходит от английского слова cluster – гроздь, скопление. Впервые в 1939 был определен предмет кластерного анализа и сделано его описание исследователем Трионом. Главное назначение кластерного анализа – разбиение множества исследуемых объектов и признаков на однородные в соответствующем понимании группы или кластеры. Это означает, что решается задача классификации данных и выявления соответствующей структуры в ней. Методы кластерного анализа можно применять в самых различных случаях, даже в тех случаях, когда речь идет о простой группировке, в которой все сводится к образованию групп по количественному сходству.

Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы. Это имеет большое значение, например, для прогнозирования конъюнктуры, когда показатели имеют разнообразный вид, затрудняющий применение традиционных эконометрических подходов.

Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать их компактными и наглядными.

Важное значение кластерный анализ имеет применительно к совокупностям временных рядов, характеризующих экономическое развитие (например, общехозяйственной и товарной конъюнктуры). Здесь можно выделять периоды, когда значения соответствующих показателей были достаточно близкими, а также определять группы временных рядов, динамика которых наиболее схожа.

Кластерный анализ можно использовать циклически. В этом случае исследование производится до тех пор, пока не будут достигнуты необходимые результаты. При этом каждый цикл здесь может давать информацию, которая способна сильно изменить направленность и подходы дальнейшего применения кластерного анализа. Этот процесс можно представить системой с обратной связью.

В задачах социально-экономического прогнозирования весьма перспективно сочетание кластерного анализа с другими количественными методами (например, с регрессионным анализом).

Как и любой другой метод, кластерный анализ имеет определенные недостатки и ограничения: В частности, состав и количество кластеров зависит от выбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счет замены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемой совокупности каких-либо значений кластеров.

В кластерном анализе считается, что:

а) выбранные характеристики допускают в принципе желательное разбиение на кластеры;

б) единицы измерения (масштаб) выбраны правильно.

Выбор масштаба играет большую роль. Как правило, данные нормализуют вычитанием среднего и делением на стандартное отклоненение, так что дисперсия оказывается равной единице.

Задача кластерного анализа.

Задача кластерного анализа заключается в том, чтобы на основании данных, содержащихся во множестве Х, разбить множество объектов G на m (m – целое) кластеров (подмножеств) Q1, Q2, …, Qm, так, чтобы каждый объект Gj принадлежал одному и только одному подмножеству разбиения и чтобы объекты, принадлежащие одному и тому же кластеру, были сходными, в то время, как объекты, принадлежащие разным кластерам были разнородными.

Например, пусть G включает n стран, любая из которых характеризуется ВНП на душу населения (F1), числом М автомашин на 1 тысячу человек (F2), душевым потреблением электроэнергии (F3), душевым потреблением стали (F4) и т.д. Тогда Х1 (вектор измерений) представляет собой набор указанных характеристик для первой страны, Х2 - для второй, Х3 для третьей, и т.д. Задача заключается в том, чтобы разбить страны по уровню развития.

Решением задачи кластерного анализа являются разбиения, удовлетворяющие некоторому критерию оптимальности. Этот критерий может представлять собой некоторый функционал, выражающий уровни желательности различных разбиений и группировок, который называют целевой функцией. Например, в качестве целевой функции может быть взята внутригрупповая сумма квадратов отклонения:

где xj - представляет собой измерения j-го объекта.

Для решения задачи кластерного анализа необходимо определить понятие сходства и разнородности.

Понятно то, что объекты i-ый и j-ый попадали бы в один кластер, когда расстояние (отдаленность) между точками Хi и Хj было бы достаточно маленьким и попадали бы в разные кластеры, когда это расстояние было бы достаточно большим. Таким образом, попадание в один или разные кластеры объектов определяется понятием расстояния между Хi и Хj из Ер, где Ер - р-мерное евклидово пространство. Неотрицательная функция d(Хi , Хj) называется функцией расстояния (метрикой), если:

а) d(Хi , Хj) ³ 0, для всех Хi и Хj из Ер

б) d(Хi, Хj) = 0, тогда и только тогда, когда Хi = Хj

в) d(Хi, Хj) = d(Хj, Хi)

г) d(Хi, Хj) £ d(Хi, Хk) + d(Хk, Хj), где Хj; Хi и Хk - любые три вектора из Ер.

Значение d(Хi, Хj) для Хi и Хj называется расстоянием между Хi и Хj и эквивалентно расстоянию между Gi и Gj соответственно выбранным характеристикам (F1, F2, F3, ..., Fр).

Наиболее часто употребляются следующие функции расстояний:

1. Евклидово расстояние d2(Хi , Хj) =

2. l1 - норма d1(Хi , Хj) =

3. Сюпремум - норма d¥ (Хi , Хj) = sup

k = 1, 2, ..., р

4. lp - норма dр(Хi , Хj) =

Евклидова метрика является наиболее популярной. Метрика l1 наиболее легкая для вычислений. Сюпремум-норма легко считается и включает в себя процедуру упорядочения, а lp - норма охватывает функции расстояний 1, 2, 3,.

Пусть n измерений Х1, Х2,..., Хn представлены в виде матрицы данных размером p ´n:

Тогда расстояние между парами векторов d(Хi , Хj) могут быть представлены в виде симметричной матрицы расстояний:

Понятием, противоположным расстоянию, является понятие сходства между объектами Gi. и Gj. Неотрицательная вещественная функция S(Хi ; Хj) = Sij называется мерой сходства, если:Величину Sij называют коэффициентом сходства.

1.3. Методы кластерного анализа.

Сегодня существует достаточно много методов кластерного анализа. Остановимся на некоторых из них (ниже приводимые методы принято называть методами минимальной дисперсии).

Пусть Х - матрица наблюдений: Х = (Х1, Х2,..., Хu) и квадрат евклидова расстояния между Хi и Хj определяется по формуле:

1) Метод полных связей.

Суть данного метода в том, что два объекта, принадлежащих одной и той же группе (кластеру), имеют коэффициент сходства, который меньше некоторого порогового значения S. В терминах евклидова расстояния d это означает, что расстояние между двумя точками (объектами) кластера не должно превышать некоторого порогового значения h. Таким образом, h определяет максимально допустимый диаметр подмножества, образующего кластер.

2) Метод максимального локального расстояния.

Каждый объект рассматривается как одноточечный кластер. Объекты группируются по следующему правилу: два кластера объединяются, если максимальное расстояние между точками одного кластера и точками другого минимально. Процедура состоит из n - 1 шагов и результатом являются разбиения, которые совпадают со всевозможными разбиениями в предыдущем методе для любых пороговых значений.

3) Метод Ворда.

В этом методе в качестве целевой функции применяют внутригрупповую сумму квадратов отклонений, которая есть ни что иное, как сумма квадратов расстояний между каждой точкой (объектом) и средней по кластеру, содержащему этот объект. На каждом шаге объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров.

В статистике существует два основных типа кластерного анализа (оба представлены в SPSS): иерархический и осуществляемый методом k-средних. В первом случае автоматизированная статистическая процедура самостоятельно определяет оптимальное число кластеров и ряд других параметров, необходимых для кластерного

анализа. Второй тип анализа имеет существенные ограничения по практической применимости -- для него необходимо самостоятельно определять и точное количество выделяемых кластеров, и начальные значения центров каждого кластера (центроиды), и некоторые другие статистики. При анализе методом k-средних данные проблемы решаются предварительным проведением иерархического кластерного анализа и затем на основании его результатов расчетом кластерной модели по методу k-средних, что в большинстве случаев не только не упрощает, а наоборот, усложняет работу исследователя (в особенности неподготовленного).

В целом можно сказать, что в связи с тем, что иерархический кластерный анализ весьма требователен к аппаратным ресурсам компьютера, кластерный анализ по методу k-средних введен в SPSS для обработки очень больших массивов данных, состоящих из многих тысяч наблюдений (респондентов), в условиях недостаточной мощности компьютерного оборудования1. Размеры выборок, используемых в маркетинговых исследованиях, в большинстве случаев не превышают четыре тысячи респондентов. Практика маркетинговых исследований показывает, что именно первый тип кластерного анализа -- иерархический -- рекомендуется для использования во всех случаях как наиболее релевантный, универсальный и точный. Вместе с тем необходимо подчеркнуть, что при проведении кластерного анализа важным является отбор релевантных переменных. Данное замечание очень существенно, так как включение в анализ нескольких или даже одной нерелевантной переменной способно привести к неудаче всей статистической процедуры.

Описание методики проведения кластерного анализа мы проведем на следующем примере из практики маркетинговых исследований.

Исходные данные:

В ходе исследования было опрошено 745 авиапассажиров, летавших одной из 22 российских и зарубежных авиакомпаний. Авиапассажиров просили оценить по пятибалльной шкале -- от 1 (очень плохо) до 5 (отлично) -- семь параметров работы наземного персонала авиакомпаний в процессе регистрации пассажиров на рейс: вежливость, профессионализм, оперативность, готовность помочь, регулирование очереди, внешний вид, работа персонала в целом.

Требуется:

Сегментировать исследуемые авиакомпании по уровню воспринимаемого авиапассажирами качества работы наземного персонала.

Итак, у нас есть файл данных, который состоит из семи интервальных переменных, обозначающих оценки качества работы наземного персонала различных авиакомпаний (ql3-ql9), представленные в единой пятибалльной шкале. Файл данных содержит одновариантную переменную q4, указывающую выбранные респондентами авиакомпании (всего 22 наименования). Проведем кластерный анализ и определим, на какие целевые группы можно разделить данные авиакомпании.

Иерархический кластерный анализ проводится в два этапа. Результат первого этапа -- число кластеров (целевых сегментов), на которые следует разделить исследуемую выборку респондентов. Процедура кластерного анализа как таковая не

может самостоятельно определить оптимальное число кластеров. Она может только подсказать искомое число. Поскольку задача определения оптимального числа сегментов является ключевой, она обычно решается на отдельном этапе анализа. На втором этапе производится собственно кластеризация наблюдений по тому числу кластеров, которое было определено в ходе первого этапа анализа. Теперь рассмотрим эти шаги кластерного анализа по порядку.

Процедура кластерного анализа запускается при помощи меню Analyze > Classify > Hierarchical Cluster. В открывшемся диалоговом окне из левого списка всех имеющихся в файле данных переменных выберите переменные, являющиеся критериями сегментирования. В нашем случае их семь, и обозначают они оценки параметров работы наземного персонала ql3-ql9 (рис. 5.44). В принципе указания совокупности критериев сегментирования будет вполне достаточно для выполнения первого этапа кластерного анализа.

Рис. 5.44.

По умолчанию кроме таблицы с результатами формирования кластеров, на основании которой мы определим их оптимальное число, SPSS выводит также специальную перевернутую гистограмму icicle, помогающую, по замыслу создателей программы, определить оптимальное количество кластеров; вывод диаграмм осуществляется кнопкой Plots (рис. 5.45). Однако если оставить данный параметр установленным, мы потратим много времени на обработку даже сравнительно небольшого файла данных. Кроме icicle в окне Plots можно выбрать более быструю линейчатую диаграмму Dendogram. Она представляет собой горизонтальные столбики, отражающие процесс формирования кластеров. Теоретически при небольшом (до 50-100) количестве респондентов данная диаграмма действительно помогает выбрать оптимальное решение относительно требуемого числа кластеров. Однако практически во всех примерах из маркетинговых исследований размер выборки превышает это значение. Дендограмма становится совершенно бесполезной, так как даже при относительно небольшом числе наблюдений представляет собой очень длинную последовательность номеров строк исходного файла данных, соединенных между собой горизонтальными и вертикальными линиями. Большинство учебников по SPSS содержат примеры кластерного анализа именно на таких искусственных, малых выборках. В настоящем пособии мы показываем, как наиболее эффективно работать с SPSS в практических условиях и на примере реальных маркетинговых исследований.

Рис. 5.45.

Как мы установили, для практических целей ни Icicle, ни Dendogram не пригодны. Поэтому в главном диалоговом окне Hierarchical Cluster Analysis рекомендуется не выводить диаграммы, отменив выбранный по умолчанию параметр Plots в области Display, как показано на рис. 5.44. Теперь все готово для выполнения первого этапа кластерного анализа. Запустите процедуру, щелкнув на кнопке ОК.

Через некоторое время в окне SPSS Viewer появятся результаты. Как было сказано выше, единственным значимым для нас итогом первого этапа анализа будет таблица Average Linkage (Between Groups), представленная на рис. 5.46. На основании этой таблицы мы должны определить оптимальное число кластеров. Необходимо заметить, что единого универсального метода определения оптимального числа кластеров не существует. В каждом конкретном случае исследователь должен сам определить это число.

Исходя из имеющегося опыта, автор предлагает следующую схему данного процесса. Прежде всего, попробуем применить наиболее распространенный стандартный метод для определения числа кластеров. По таблице Average Linkage (Between Groups) следует определить, на каком шаге процесса формирования кластеров (колонка Stage) происходит первый сравнительно большой скачок коэффициента агломерации (колонка Coefficients). Данный скачок означает, что до него в кластеры объединялись наблюдения, находящиеся на достаточно малых расстояниях друг от друга (в нашем случае респонденты со схожим уровнем оценок по анализируемым параметрам), а начиная с этого этапа происходит объединение более далеких наблюдений.

В нашем случае коэффициенты плавно возрастают от 0 до 7,452, то есть разница между коэффициентами на шагах с первого по 728 была мала (например, между 728 и 727 шагами -- 0,534). Начиная с 729 шага происходит первый существенный скачок коэффициента: с 7,452 до 10,364 (на 2,912). Шаг, на котором происходит первый скачок коэффициента, -- 729. Теперь, чтобы определить оптимальное количество кластеров, необходимо вычесть полученное значение из общего числа наблюдений (размера выборки). Общий размер выборки в нашем случае составляет 745 человек; следовательно, оптимальное количество кластеров составляет 745-729 = 16.


Рис. 5.46.

Мы получили достаточно большое число кластеров, которое в дальнейшем будет сложно интерпретировать. Поэтому теперь следует исследовать полученные кластеры и определить, какие из них являются значимыми, а какие нужно попытаться сократить. Данная задача решается на втором этапе кластерного анализа.

Откройте главное диалоговое окно процедуры кластерного анализа (меню Analyze > Classify > Hierarchical Cluster). В поле для анализируемых переменных у нас уже есть семь параметров. Щелкните на кнопке Save. Открывшееся диалоговое окно (рис. 5.47) позволяет создать в исходном файле данных новую переменную, распределяющую респондентов на целевые группы. Выберите параметр Single Solution и укажите в соответствующем поле необходимое количество кластеров -- 16 (определено на первом этапе кластерного анализа). Щелкнув на кнопке Continue, вернитесь в главное диалоговое окно, в котором щелкните на кнопке ОК, чтобы запустить процедуру кластерного анализа.

Прежде чем продолжить описание процесса кластерного анализа, необходимо привести краткое описание других параметров. Среди них есть как полезные возможности, так и фактически лишние (с точки зрения практических маркетинговых исследований). Так, например, главное диалоговое окно Hierarchial Cluster Analysis содержит поле Label Cases by, в которое при желании можно поместить текстовую переменную, идентифицирующую респондентов. В нашем случае для этих целей может служить переменная q4, кодирующая выбранные респондентами авиакомпании. На практике сложно придумать рациональное объяснение использованию поля Label Cases by, поэтому можно спокойно всегда оставлять его пустым.

Рис. 5.47.

Нечасто при проведении кластерного анализа используется диалоговое окно Statistics, вызываемое одноименной кнопкой в главном диалоговом окне. Оно позволяет организовать вывод в окне SPSS Viewer таблицы Cluster Membership, в которой каждому респонденту в исходном файле данных сопоставляется номер кластера. Данная таблица при достаточно большом количестве респондентов (практически во всех примерах маркетинговых исследований) становится совершенно бесполезной, так как представляет собой длинную последовательность пар значений «номер респондента/номер кластера», в таком виде не поддающуюся интерпретации. Технически цель кластерного анализа всегда состоит в образовании в файле данных дополнительной переменной, отражающей разделение респондентов на целевые группы (при помощи щелчка на кнопке Save в главном диалоговом окне кластерного анализа). Эта переменная в совокупности с номерами респондентов и есть таблица Cluster Membership. Единственный практически полезный параметр в окне Statistics -- вывод таблицы Average Linkage (Between Groups), однако он уже установлен по умолчанию. Таким образом, использование кнопки Statistics и вывод отдельной таблицы Cluster Membership в окне SPSS Viewer является нецелесообразным.

Про кнопку Plots уже было сказано выше: ее следует дезактивизировать, отменив параметр Plots в главном диалоговом окне кластерного анализа.

Кроме этих редко используемых возможностей процедуры кластерного анализа, SPSS предлагает и весьма полезные параметры. Среди них прежде всего кнопка Save, позволяющая создать в исходном файле данных новую переменную, распределяющую респондентов по кластерам. Также в главном диалоговом окне существует область для выбора объекта кластеризации: респондентов или переменных. Об этой возможности говорилось выше в разделе 5.4. В первом случае кластерный анализ используется в основном для сегментирования респондентов по некоторым критериям; во втором цель проведения кластерного анализа аналогична факторному анализу: классификация (сокращение числа) переменных.

Как видно из рис. 5.44, единственной не рассмотренной возможностью кластерного анализа является кнопка выбора метода проведения статистической процедуры Method. Эксперименты с данным Параметром позволяют добиться большей точности при определении оптимального числа кластеров. Общий вид этого диалогового окна с параметрами, установленными по умолчанию, представлен на рис. 5.48.

Рис. 5.48.

Первое, что устанавливается в данном окне, -- это метод формирования кластеров (то есть объединения наблюдений). Среди всех возможных вариантов статистических методик, предлагаемых SPSS, следует выбирать либо установленный по умолчанию метод Between-groups linkage, либо процедуру Ward (Ward"s method). Первый метод используется чаще ввиду его универсальности и относительной простоты статистической процедуры, на которой он основан. При использовании этого метода расстояние между кластерами вычисляется как среднее значение расстояний между всеми возможными парами наблюдений, причем в каждой итерации принимает участие одно наблюдение из одного кластера, а второе -- из другого. Информация, необходимая для расчетов расстояния между наблюдениями, находится на основании всех теоретически возможных пар наблюдений. Метод Ward более сложен для понимания и используется реже. Он состоит из множества этапов и основан на усреднении значений всех переменных для каждого наблюдения и последующем суммировании квадратов расстояний от вычисленных средних до каждого наблюдения. Для решения практических задач маркетинговых исследований мы рекомендуем всегда использовать метод Between-groups linkage, установленный по умолчанию.

После выбора статистической процедуры кластеризации следует выбрать метод для вычисления расстояний между наблюдениями (область Measure в диалоговом окне Method). Существуют различные методы определения расстояний для трех типов переменных, участвующих в кластерном анализе (критериев сегментирования). Эти переменные могут иметь интервальную (Interval), номинальную (Counts) или дихотомическую (Binary) шкалу. Дихотомическая шкала (Binary) подразумевает только переменные, отражающие наступление/ненаступление какого-либо события (купил/не купил, да/нет и т. д.). Другие типы дихотомических переменных (например, мужчина/женщина) следует рассматривать и анализировать как номинальные (Counts).

Наиболее часто используемым методом определения расстояний для интервальных переменных является квадрат евклидова расстояния (Squared Euclidean Distance), устанавливаемый по умолчанию. Именно этот метод зарекомендовал себя в маркетинговых исследованиях как наиболее точный и универсальный. Однако для дихотомических переменных, где наблюдения представлены только двумя значениями (например, 0 и 1), данный метод не подходит. Дело в том, что он учитывает только взаимодействия между наблюдениями типа: X = 1,Y = 0 и X = 0, Y=l (где X и Y -- переменные) и не учитывает другие типы взаимодействий. Наиболее комплексной мерой расстояния, учитывающей все важные типы взаимодействий между двумя дихотомическими переменными, является метод Лямбда (Lambda). Мы рекомендуем применять именно данный метод ввиду его универсальности. Однако существуют и другие методы, например Shape, Hamann или Anderbergs"s D.

При указании метода определения расстояний для дихотомических переменных в соответствующем поле необходимо указать конкретные значения, которые могут принимать исследуемые дихотомические переменные: в поле Present -- кодировку ответа Да, а в поле Absent -- Нет. Названия полей присутствует и отсутствует ассоциированы с тем, что в группе методов Binary предполагается использовать только дихотомические переменные, отражающие наступление/ненаступление какого-либо события. Для двух типов переменных Interval и Binary существует несколько методов определения расстояния. Для переменных с номинальным типом шкалы SPSS предлагает всего два метода: (Chi-square measure) и (Phi-square measure). Мы рекомендуем использовать первый метод как наиболее распространенный.

В диалоговом окне Method есть область Transform Values, в которой находится поле Standardize. Данное поле применяется в том случае, когда в кластерном анализе принимают участие переменные с различным типом шкалы (например, интервальные и номинальные). Для того чтобы использовать эти переменные в кластерном анализе, следует провести стандартизацию, приводящую их к единому типу шкалы -- интервальному. Самым распространенным методом стандартизации переменных является 2-стандартизация (Zscores): все переменные приводятся к единому диапазону значений от -3 до +3 и после преобразования являются интервальными.

Так как все оптимальные методы (кластеризации и определения расстояний) установлены по умолчанию, целесообразно использовать диалоговое окно Method только для указания типа анализируемых переменных, а также для указания необходимости произвести 2-стандартизацию переменных.

Итак, мы описали все основные возможности, предоставляемые SPSS для проведения кластерного анализа. Вернемся к описанию кластерного анализа, проводимого с целью сегментирования авиакомпаний. Напомним, что мы остановились на шестнадцатикластерном решении и создали в исходном файле данных новую переменную clul6_l, распределяющую все анализируемые авиакомпании по кластерам.

Чтобы установить, насколько верно мы определили оптимальное число кластеров, построим линейное распределение переменной clul6_l (меню Analyze > Descriptive Statistics > Frequencies). Как видно на рис. 5.49, в кластерах с номерами 5-16 число респондентов составляет от 1 до 7. Наряду с вышеописанным универсальным методом определения оптимального количества кластеров (на основании разности между общим числом респондентов и первым скачком коэффициента агломерации) существует также дополнительная рекомендация: размер кластеров должен быть статистически значимым и практически приемлемым. При нашем размере выборки такое критическое значение можно установить хотя бы на уровне 10. Мы видим, что под данное условие попадают лишь кластеры с номерами 1-4. Поэтому теперь необходимо пересчитать процедуру кластерного анализа с выводом четы-рехкластерного решения (будет создана новая переменная du4_l).


Рис. 5.49.

Построив линейное распределение по вновь созданной переменной du4_l, мы увидим, что только в двух кластерах (1 и 2) число респондентов является практически значимым. Нам необходимо снова перестроить кластерную модель -- теперь для двухкластерного решения. После этого построим распределение по переменной du2_l (рис. 5.50). Как вы видите из таблицы, двухкластерное решение имеет статистически и практически значимое число респондентов в каждом из двух сформированных кластеров: в кластере 1 -- 695 респондентов; в кластере 2 -- 40. Итак, мы определили оптимальное число кластеров для нашей задачи и провели собственно сегментирование респондентов по семи избранным критериям. Теперь можно считать основную цель нашей задачи достигнутой и приступать к завершающему этапу кластерного анализа -- интерпретации полученных целевых групп (сегментов).


Рис. 5.50.

Полученное решение несколько отличается от тех, которые вы, может быть, видели в учебных пособиях по SPSS. Даже в наиболее практически ориентированных учебниках приведены искусственные примеры, где в результате кластеризации получаются идеальные целевые группы респондентов. В некоторых случаях (5) авторы даже прямо указывают на искусственное происхождение примеров. В настоящем пособии мы применим в качестве иллюстрации действия кластерного анализа реальный пример из практического маркетингового исследования, не отличающийся идеальными пропорциями. Это позволит нам показать наиболее распространенные трудности проведения кластерного анализа, а также оптимальные методы их устранения.

Перед тем как приступить к интерпретации полученных кластеров, давайте подведем итоги. У нас получилась следующая схема определения оптимального числа кластеров.

¦ На этапе 1 мы определяем количество кластеров на основании математического метода, основанного на коэффициенте агломерации.

¦ На этапе 2 мы проводим кластеризацию респондентов по полученному числу кластеров и затем строим линейное распределение по образованной новой переменной (clul6_l). Здесь также следует определить, сколько кластеров состоят из статистически значимого количества респондентов. В общем случае рекомендуется устанавливать минимально значимую численность кластеров на уровне не менее 10 респондентов.

¦ Если все кластеры удовлетворяют данному критерию, переходим к завершающему этапу кластерного анализа: интерпретации кластеров. Если есть кластеры с незначимым числом составляющих их наблюдений, устанавливаем, сколько кластеров состоят из значимого количества респондентов.

¦ Пересчитываем процедуру кластерного анализа, указав в диалоговом окне Save число кластеров, состоящих из значимого количества наблюдений.

¦ Строим линейное распределение по новой переменной.

Такая последовательность действий повторяется до тех пор, пока не будет найдено решение, в котором все кластеры будут состоять из статистически значимого числа респондентов. После этого можно переходить к завершающему этапу кластерного анализа -- интерпретации кластеров.

Необходимо особо отметить, что критерий практической и статистической значимости численности кластеров не является единственным критерием, по которому можно определить оптимальное число кластеров. Исследователь может самостоятельно, на основании имеющегося у него опыта предложить число кластеров (условие значимости должно удовлетворяться). Другим вариантом является довольно распространенная ситуация, когда в целях исследования заранее ставится условие сегментировать респондентов по заданному числу целевых групп. В этом случае необходимо просто один раз провести иерархический кластерный анализ с сохранением требуемого числа кластеров и затем пытаться интерпретировать то, что получится.

Для того чтобы описать полученные целевые сегменты, следует воспользоваться процедурой сравнения средних значений исследуемых переменных (кластерных центроидов). Мы сравним средние значения семи рассматриваемых критериев сегментирования в каждом из двух полученных кластеров.

Процедура сравнения средних значений вызывается при помощи меню Analyze > Compare Means > Means. В открывшемся диалоговом окне (рис. 5.51) из левого списка выберите семь переменных, избранных в качестве критериев сегментирования (ql3-ql9), и перенесите их в поле для зависимых переменных Dependent List. Затем переменную сШ2_1, отражающую разделение респондентов на кластеры при окончательном (двухкластерном) решении задачи, переместите из левого списка в поле для независимых переменных Independent List. После этого щелкните на кнопке Options.

Рис. 5.51.

Откроется диалоговое окно Options, выберите в нем необходимые статистики для сравнения кластеров (рис. 5.52). Для этого в поле Cell Statistics оставьте только вывод средних значений Mean, удалив из него другие установленные по умолчанию статистики. Закройте диалоговое окно Options щелчком на кнопке Continue. Наконец, из главного диалогового окна Means запустите процедуру сравнения средних значений (кнопка ОК).

Рис. 5.52.

В открывшемся окне SPSS Viewer появятся результаты работы статистической процедуры сравнения средних значений. Нас интересует таблица Report (рис. 5.53). Из нее можно увидеть, на каком основании SPSS разделила респондентов на два кластера. Таким критерием в нашем случае служит уровень оценок по анализируемым параметрам. Кластер 1 состоит из респондентов, для которых средние оценки по всем критериям сегментирования находятся на сравнительно высоком уровне (4,40 балла и выше). Кластер 2 включает респондентов, оценивших рассматриваемые критерии сегментирования достаточно низко (3,35 балла и ниже). Таким образом, можно сделать вывод о том, что 93,3 % респондентов, сформировавшие кластер 1, оценили анализируемые авиакомпании по всем параметрам в целом хорошо; 5,4 % -- достаточно низко; 1,3 % -- затруднились ответить (см. рис. 5.50). Из рис. 5.53 можно также сделать вывод о том, какой уровень оценок для каждого из рассматриваемых параметров в отдельности является высоким, а какой -- низким (причем данный вывод будет сделан со стороны респондентов, что позволяет добиться высокой точности классификации). Из таблицы Report можно видеть, что для переменной Регулирование очереди высоким считается уровень средней оценки 4,40, а для параметра Внешний вид -- 4.72.


Рис. 5.53.

Может оказаться, что в аналогичном случае по параметру X высокой оценкой считается 4,5, а по параметру Y -- только 3,9. Это не будет ошибкой кластеризации, а напротив, позволит сделать важный вывод относительно значимости для респондентов рассматриваемых параметров. Так, для параметра Y уже 3,9 балла является хорошей оценкой, тогда как к параметру X респонденты предъявляют более строгие требования.

Мы идентифицировали два значимых кластера, различающиеся по уровню средних оценок по критериям сегментирования. Теперь можно присвоить метки полученным кластерам: для 1 -- Авиакомпании, удовлетворяющие требованиям респондентов (по семи анализируемым критериям); для 2 -- Авиакомпании, не удовлетворяющие требованиям респондентов. Теперь можно посмотреть, какие конкретно авиакомпании (закодированные в переменной q4) удовлетворяют требованиям респондентов, а какие -- нет по критериям сегментирования. Для этого следует построить перекрестное распределение переменной q4 (анализируемые авиакомпании) в зависимости от кластеризующей переменной clu2_l. Результаты такого перекрестного анализа представлены на рис. 5.54.

По этой таблице можно сделать следующие выводы относительно членства исследуемых авиакомпаний в выделенных целевых сегментах.


Рис. 5.54.

1. Авиакомпании, полностью удовлетворяющие требованиям всех клиентов по параметру работы наземного персонала (входят только в один первый кластер):

¦ Внуковские авиалинии;

¦ American Airlines;

¦ Delta Airlines;

¦ Austrian Airlines;

¦ British Airways;

¦ Korean Airlines;

¦ Japan Airlines.

2. Авиакомпании, удовлетворяющие требованиям большинства своих клиентов по параметру работы наземного персонала (большая часть респондентов, летающих данными авиакомпаниями, удовлетворены работой наземного персонала):

¦ Трансаэро.

3. Авиакомпании, не удовлетворяющие требованиям большинства своих клиентов по параметру работы наземного персонала (большая часть респондентов, летающих данными авиакомпаниями, не удовлетворены работой наземного персонала):

¦ Домодедовские авиалинии;

¦ Пулково;

¦ Сибирь;

¦ Уральские авиалинии;

¦ Самарские авиалинии;

Таким образом, получено три целевых сегмента авиакомпаний по уровню средних оценок, характеризующиеся различной степенью удовлетворенности респондентов работой наземного персонала:

  • 1. наиболее привлекательные для пассажиров авиакомпании по уровню работы наземного персонала (14);
  • 2. скорее привлекательные авиакомпании (1);
  • 3. скорее непривлекательные авиакомпании (7).

Мы успешно завершили все этапы кластерного анализа и сегментировали авиакомпании по семи выделенным критериям.

Теперь приведем описание методики кластерного анализа в паре с факторным. Используем условие задачи из раздела 5.2.1 (факторный анализ). Как уже было сказано, в задачах сегментирования при большом числе переменных целесообразно предварять кластерный анализ факторным. Это делается для сокращения количества критериев сегментирования до наиболее значимых. В нашем случае в исходном файле данных у нас есть 24 переменные. В результате факторного анализа нам удалось сократить их число до 5. Теперь это число факторов может эффективно применяться для кластерного анализа, а сами факторы -- использоваться в качестве критериев сегментирования.

Если перед нами стоит задача сегментировать респондентов по их оценке различных аспектов текущей конкурентной позиции авиакомпании X, можно провести иерархический кластерный анализ по выделенным пяти критериям (переменные nfacl_l-nfac5_l). В нашем случае переменные оценивались по разным шкалам. Например, оценка 1 для утверждения Я бы не хотел, чтобы авиакомпания менялась и такая же оценка утверждению Изменения в авиакомпании будут позитивным моментом диаметрально противоположны по смыслу. В первом случае 1 балл (совершенно не согласен) означает, что респондент приветствует изменения в авиакомпании; во втором случае оценка в 1 балл свидетельствует о том, что респондент отвергает изменения в авиакомпании. При интерпретации кластеров у нас неизбежно возникнут трудности, так как такие противоположные по смыслу переменные могут

попасть в один и тот же фактор. Таким образом, для целей сегментирования рекомендуется сначала привести в соответствие шкалы исследуемых переменных, а затем пересчитать факторную модель. И уже далее проводить кластерный анализ над полученными в результате факторного анализа переменными-факторами. Мы не будем снова подробно описывать процедуры факторного и кластерного анализа (это было сделано выше в соответствующих разделах). Отметим лишь, что при такой методике в результате у нас получилось три целевые группы авиапассажиров, различающихся по уровню оценок выделенным факторам (то есть группам переменных): низшая, средняя и высшая.

Весьма полезным применением кластерного анализа является разделение на группы частотных таблиц. Предположим, у нас есть линейное распределение ответов на вопрос Какие марки антивирусов установлены в Вашей организации?. Для формирования выводов по данному распределению необходимо разделить марки антивирусов на несколько групп (обычно 2-3). Чтобы разделить все марки на три группы (наиболее популярные марки, средняя популярность и непопулярные марки), лучше всего воспользоваться кластерным анализом, хотя, как правило, исследователи разделяют элементы частотных таблиц на глаз, основываясь на субъективных соображениях. В противоположность такому подходу кластерный анализ позволяет научно обосновать выполненную группировку. Для этого следует ввести значения каждого параметра в SPSS (эти значения целесообразно выражать в процентах) и затем выполнить кластерный анализ для этих данных. Сохранив кластерное решение для необходимого количества групп (в нашем случае 3) в виде новой переменной, мы получим статистически обоснованную группировку.

Заключительную часть этого раздела мы посвятим описанию применения кластерного анализа для классификации переменных и сравнения его результатов с результатами факторного анализа, проведенного в разделе 5.2.1. Для этого мы вновь воспользуемся условием задачи про оценку текущей позиции авиакомпании X на рынке авиаперевозок. Методика проведения кластерного анализа практически полностью повторяет описанную выше (когда сегментировались респонденты).

Итак, в исходном файле данных у нас есть 24 переменные, описывающие отношение респондентов к различным аспектам текущей конкурентной позиции авиакомпании X. Откройте главное диалоговое окно Hierarchical Cluster Analysis и поместите 24 переменные (ql-q24) в поле Variable(s), рис. 5.55. В области Cluster укажите, что вы классифицируете переменные (отметьте параметр Variables). Вы увидите, что кнопка Save стала недоступна -- в отличие от факторного, в кластерном анализе нельзя сохранить факторные рейтинги для всех респондентов. Откажитесь от вывода диаграмм, дезактивизировав параметр Plots. На первом этапе вам не нужны другие параметры, поэтому просто щелкните на кнопке О К, чтобы запустить процедуру кластерного анализа.

В окне SPSS Viewer появилась таблица Agglomeration Schedule, по которой мы определили оптимальное число кластеров описанным выше методом (рис. 5.56). Первый скачок коэффициента агломерации наблюдается на 20 шаге (с 18834,000 до 21980,967). Исходя из общего числа анализируемых переменных, равного 24, можно вычислить оптимальное число кластеров: 24 - 20 = 4.

Рис. 5.55.


Рис. 5.56.

При классификации переменных практически и статистически значимым является кластер, состоящий всего из одной переменной. Поэтому, поскольку мы получили приемлемое число кластеров математическим методом, проведение дальнейших проверок не требуется. Вместо этого снова откройте главное диалоговое окно кластерного анализа (все данные, использованные на предыдущем этапе, сохранились) и щелкните на кнопке Statistics, чтобы организовать вывод классификационной таблицы. Вы увидите одноименное диалоговое окно, где необходимо указать число кластеров, на которое необходимо разделить 24 переменные (рис. 5.57). Для этого выберите параметр Single solution и в соответствующем поле укажите требуемое число кластеров: 4. Теперь закройте диалоговое окно Statistics щелчком на кнопке Continue и из главного окна кластерного анализа запустите процедуру на выполнение.

В результате в окне SPSS Viewer появится таблица Cluster Membership, распределяющая анализируемые переменные на четыре кластера (рис. 5.58).

Рис. 5.58.

По данной таблице можно отнести каждую рассматриваемую переменную в определенный кластер следующим образом.

Кластер 1

ql. Авиакомпания X обладает репутацией компании, превосходно обслуживающей пассажиров.

q2. Авиакомпания X может конкурировать с лучшими авиакомпаниями мира.

q3. Я верю, что у авиакомпании X есть перспективное будущее в мировой авиации.

q5. Я горжусь тем, что работаю в авиакомпании X.

q9. Нам предстоит долгий путь, прежде чем мы сможем претендовать на то, чтобы называться авиакомпанией мирового класса.

qlO. Авиакомпания X действительно заботится о пассажирах.

ql3. Мне нравится, как в настоящее время авиакомпания X представлена визуально широкой общественности (в плане цветовой гаммы и фирменного стиля).

ql4. Авиакомпания X -- лицо России.

ql6. Обслуживание авиакомпании X является последовательным и узнаваемым во всем

ql8. Авиакомпании X необходимо меняться для того, чтобы использовать в полной мере имеющийся потенциал.

ql9. Я думаю, что авиакомпании X необходимо представить себя в визуальном плане более современно.

q20. Изменения в авиакомпании X будут позитивным моментом. q21. Авиакомпания X -- эффективная авиакомпания.

q22. Я бы хотел, чтобы имидж авиакомпании X улучшился с точки зрения иностранных пассажиров.

q23. Авиакомпания X -- лучше, чем многие о ней думают.

q24. Важно, чтобы люди во всем мире знали, что мы -- российская авиакомпания.

Кластер 2

q4. Я знаю, какой будет стратегия развития авиакомпании X в будущем.

q6. В авиакомпании X хорошее взаимодействие между подразделениями.

q7. Каждый сотрудник авиакомпании прикладывает все усилия для того, чтобы обеспечить ее успех.

q8. Сейчас авиакомпания X быстро улучшается.

qll. Среди сотрудников авиакомпании имеет место высокая степень удовлетворенности работой.

ql2. Я верю, что менеджеры высшего звена прикладывают все усилия для достижения успеха авиакомпании.

Кластер 3

ql5. Мы выглядим «вчерашним днем» по сравнению с другими авиакомпаниями.

Кластер 4

ql7. Я бы не хотел, чтобы авиакомпания X менялась.

Сравнив результаты факторного (раздел 5.2.1) и кластерного анализов, вы увидите, что они существенно различаются. Кластерный анализ не только предоставляет существенно меньшие возможности для кластеризации переменных (например, отсутствие возможности сохранять групповые рейтинги) по сравнению с факторным анализом, но и выдает гораздо менее наглядные результаты. В нашем случае, если кластеры 2, 3 и 4 еще поддаются логической интерпретации1, то кластер 1 содержит совершенно разные по смыслу утверждения. В данной ситуации можно либо попытаться описать кластер 1 как есть, либо перестроить статистическую модель с другим числом кластеров. В последнем случае для поиска оптимального числа кластеров, поддающихся логическому описанию, можно воспользоваться параметром Range of solutions в диалоговом окне Statistics (см. рис. 5.57), указав в соответствующих полях минимальное и максимальное число кластеров (в нашем случае 4 и 6 соответственно). В такой ситуации SPSS перестроит таблицу Cluster Membership для каждого числа кластеров. Задача аналитика в данном случае -- попытаться подобрать такую классификационную модель, при которой все кластеры будут интерпретироваться однозначно. С целью демонстрации возможностей процедуры кластерного анализа для кластеризации переменных мы не будем перестраивать кластерную модель, а ограничимся лишь сказанным выше.

Необходимо отметить, что, несмотря на кажущуюся простоту проведения кластерного анализа по сравнению с факторным, практически во всех случаях из маркетинговых исследований факторный анализ оказывается быстрее и эффективнее кластерного. Поэтому для классификации (сокращения) переменных мы настоятельно рекомендуем использовать именно факторный анализ и оставить применение кластерного анализа для классификации респондентов.

Классификационный анализ является, пожалуй, одним из наиболее сложных, с точки зрения неподготовленного пользователя, статистических инструментов. С этим связана его весьма малая распространенность в маркетинговых компаниях. Вместе с тем именно данная группа статистических методов является и одной из наиболее полезных для практиков в области маркетинговых исследований.

Часто в самых различных областях деятельности нам приходится иметь дело с огромным количеством каких-либо предметов, в отношении которых требуется принять меры.

А мы не можем даже осознать весь этот объем, а не то что разобраться в нем.

Какой же выход? Ну, конечно, «разложить все по полочкам». В данном случае народная мудрость обретает вполне определенную научную формулировку.

Кластерный анализ – это исследование объектов путем объединения их по однородным группам со схожими признаками. Его методы применимы буквально во всех сферах: от медицины до торговли на Форекс, от автострахования до археологии. А для маркетологов и спецов по кадрам он просто незаменим.

Об этом подробнее – в статье.

Что такое кластер

Кластерный анализ предназначен для разбиения совокупности объектов на однородные группы (кластеры или классы). Это задача многомерной классификации данных.


Существует около 100 разных алгоритмов кластеризации, однако, наиболее часто используемые:

  1. иерархический кластерный анализ,
  2. кластеризация методом k-средних.

Где применяется кластерный анализ:

  • В маркетинге это сегментация конкурентов и потребителей.
  • В менеджменте:
    1. разбиение персонала на различные по уровню мотивации группы,
    2. классификация поставщиков,
    3. выявление схожих производственных ситуаций, при которых возникает брак.
  • В медицине - классификация симптомов, пациентов, препаратов.
  • В социологии - разбиение респондентов на однородные группы.

По сути кластерный анализ хорошо зарекомендовал себя во всех сферах жизнедеятельности человека. Прелесть данного метода - он работает даже тогда, когда данных мало и не выполняются требования нормальности распределений случайных величин и другие требования классических методов статистического анализа.

Поясним суть кластерного анализа, не прибегая к строгой терминологии.

Допустим, Вы провели анкетирование сотрудников и хотите определить, каким образом можно наиболее эффективно управлять персоналом. То есть Вы хотите разделить сотрудников на группы и для каждой из них выделить наиболее эффективные рычаги управления. При этом различия между группами должны быть очевидными, а внутри группы респонденты должны быть максимально похожи.

Для решения задачи предлагается использовать иерархический кластерный анализ. В результате мы получим дерево, глядя на которое мы должны определиться, на сколько классов (кластеров) мы хотим разбить персонал. Предположим, что мы решили разбить персонал на три группы, тогда для изучения респондентов, попавших в каждый кластер получим табличку примерно следующего содержания:


Поясним, как сформирована приведенная выше таблица. В первом столбце расположен номер кластера - группы, данные по которой отражены в строке. Например, первый кластер на 80% составляют мужчины. 90% первого кластера попадают в возрастную категорию от 30 до 50 лет, а 12% респондентов считает, что льготы очень важны. И так далее.

Попытаемся составить портреты респондентов каждого кластера:

  1. Первая группа — в основном мужчины зрелого возраста, занимающие руководящие позиции. Соцпакет (MED, LGOTI, TIME-свободное время) их не интересует. Они предпочитают получать хорошую зарплату, а не помощь от работодателя.
  2. Группа два — наоборот, отдает предпочтение соцпакету. Состоит она, в основном, из людей «в возрасте», занимающих невысокие посты. Зарплата для них безусловно важна, но есть и другие приоритеты.
  3. Третья группа — наиболее «молодая». В отличие от предыдущих двух, очевиден интерес к возможностям обучения и профессионального роста. У этой категории сотрудников есть хороший шанс в скором времени пополнить первую группу.

Таким образом, планируя кампанию по внедрению эффективных методов управления персоналом, очевидно, что в нашей ситуации можно увеличить соцпакет у второй группы в ущерб, к примеру, зарплате. Если говорить о том, каких специалистов следует направлять на обучение, то можно однозначно рекомендовать обратить внимание на третью группу.

Источник: "nickart.spb.ru"

Кластерный анализ — это ключ к пониманию рынка

Кластер - это цена актива в определенный промежуток времени, на котором совершались сделки. Результирующий объем покупок и продаж указан цифрой внутри кластера. Бар любого ТФ вмещает в себя, как правило, несколько кластеров. Это позволяет детально видеть объемы покупок, продаж и их баланс в каждом отдельном баре, по каждому ценовому уровню.


Построение кластерного графика

Изменение цены одного актива неизбежно влечет за собой цепочку ценовых движений и на других инструментах. В большинстве случаев понимание трендового движения происходит уже в тот момент, когда оно бурно развивается, и вход в рынок по тренду чреват попаданием в коррекционную волну.

Для успешных сделок необходимо понимать текущую ситуацию и уметь предвидеть будущие ценовые движения. Этому можно научиться, анализируя график кластеров. С помощью кластерного анализа можно видеть активность участников рынка внутри даже самого маленького ценового бара.

Это наиболее точный и детальный анализ, так как показывает точечное распределение объемов сделок по каждому ценовому уровню актива. На рынке постоянно идет противоборство интересов продавцов и покупателей. И каждое самое маленькое движение цены (тик), является тем ходом к компромиссу – ценовому уровню - который в данный момент устраивает обе стороны.

Но рынок динамичен, количество продавцов и покупателей непрерывно изменяется. Если в один момент времени на рынке доминировали продавцы, то в следующий момент, вероятнее всего, будут покупатели. Не одинаковым оказывается и количество совершенных сделок на соседних ценовых уровнях.

И все же сначала рыночная ситуация отражается на суммарных объемах сделок, а уж затем на цене. Если видеть действия доминирующих участников рынка (продавцов или покупателей), то можно предсказывать и само движение цены.

Для успешного применения кластерного анализа прежде всего следует понять, что такое кластер и дельта:

  • Кластером называют ценовое движение, которое разбито на уровни, на которых совершались сделки с известными объемами.
  • Дельта показывает разницу между покупками и продажами, происходящими в каждом кластере.


Кластерный график

Каждый кластер, или группа дельт, позволяет разобраться в том, покупатели или продавцы преобладают на рынке в данный момент времени. Достаточно лишь подсчитать общую дельту, просуммировав продажи и покупки. Если дельта отрицательна, то рынок перепродан, на нем избыточными являются сделки на продажу. Когда же дельта положительна, то на рынке явно доминируют покупатели.

Сама дельта может принимать нормальное или критическое значение. Значение объема дельты сверх нормального в кластере выделяют красным цветом. Если дельта умеренна, то это характеризует флетовое состояние на рынке. При нормальном значении дельты на рынке наблюдается трендовое движение, а вот критическое значение всегда является предвестником разворота цены.

Торговля на Форекс с помощью КА

Для получения максимальной прибыли нужно уметь определить переход дельты из умеренного уровня в нормальный. Ведь в этом случае можно заметить само начало перехода от флета к трендовому движению и суметь получить наибольшую прибыль.

Более наглядным является кластерный график, на нем можно увидеть значимые уровни накопления и распределения объемов, построить уровни поддержки и сопротивления.

Это позволяет трейдеру найти точный вход в сделку. Используя дельту, можно судить о преобладании на рынке продаж или покупок. Кластерный анализ позволяет наблюдать сделки и отслеживать их объемы внутри бара любого ТФ. Особо это важно при подходе к значимым уровням поддержки или сопротивления. Суждения по кластерам - ключ к пониманию рынка.

Источник: "orderflowtrading.ru"

Области и особенности применения анализа кластеров

Термин кластерный анализ (впервые ввел Tryon, 1939) в действительности включает в себя набор различных алгоритмов классификации. Общий вопрос, задаваемый исследователями во многих областях, состоит в том, как организовать наблюдаемые данные в наглядные структуры, т.е. развернуть таксономии.

Например, биологи ставят цель разбить животных на различные виды, чтобы содержательно описать различия между ними. В соответствии с современной системой, принятой в биологии, человек принадлежит к приматам, млекопитающим, амниотам, позвоночным и животным.

Заметьте, что в этой классификации чем выше уровень агрегации, тем меньше сходства между членами в соответствующем классе. Человек имеет больше сходства с другими приматами (т.е. с обезьянами), чем с «отдаленными» членами семейства млекопитающих (например, собаками) и т.д.

Заметим, что предыдущие рассуждения ссылаются на алгоритмы кластеризации, но ничего не упоминают о проверке статистической значимости. Фактически, кластерный анализ является не столько обычным статистическим методом, сколько «набором» различных алгоритмов «распределения объектов по кластерам».

Существует точка зрения, что в отличие от многих других статистических процедур, методы кластерного анализа используются в большинстве случаев тогда, когда вы не имеете каких-либо априорных гипотез относительно классов, но все еще находитесь в описательной стадии исследования. Следует понимать, что кластерный анализ определяет «наиболее возможно значимое решение».

Поэтому проверка статистической значимости в действительности здесь неприменима, даже в случаях, когда известны p-уровни (как, например, в методе K средних).

Техника кластеризации применяется в самых разнообразных областях. Хартиган (Hartigan, 1975) дал прекрасный обзор многих опубликованных исследований, содержащих результаты, полученные методами кластерного анализа. Например, в области медицины кластеризация заболеваний, лечения заболеваний или симптомов заболеваний приводит к широко используемым таксономиям.

В области психиатрии правильная диагностика кластеров симптомов, таких как паранойя, шизофрения и т.д., является решающей для успешной терапии. В археологии с помощью кластерного анализа исследователи пытаются установить таксономии каменных орудий, похоронных объектов и т.д.

Известны широкие применения кластерного анализа в маркетинговых исследованиях. В общем, всякий раз, когда необходимо классифицировать «горы» информации к пригодным для дальнейшей обработки группам, кластерный анализ оказывается весьма полезным и эффективным.

Древовидная кластеризация

Назначение алгоритма объединения (древовидной кластеризации) состоит в объединении объектов (например, животных) в достаточно большие кластеры, используя некоторую меру сходства или расстояние между объектами. Типичным результатом такой кластеризации является иерархическое дерево.

Рассмотрим горизонтальную древовидную диаграмму. Диаграмма начинается с каждого объекта в классе (в левой части диаграммы). Теперь представим себе, что постепенно (очень малыми шагами) вы «ослабляете» ваш критерий о том, какие объекты являются уникальными, а какие нет. Другими словами, вы понижаете порог, относящийся к решению об объединении двух или более объектов в один кластер.


В результате, вы связываете вместе все большее и большее число объектов и агрегируете (объединяете) все больше и больше кластеров, состоящих из все сильнее различающихся элементов. Окончательно, на последнем шаге все объекты объединяются вместе.

На этих диаграммах горизонтальные оси представляют расстояние объединения (в вертикальных древовидных диаграммах вертикальные оси представляют расстояние объединения). Так, для каждого узла в графе (там, где формируется новый кластер) вы можете видеть величину расстояния, для которого соответствующие элементы связываются в новый единственный кластер.

Когда данные имеют ясную «структуру» в терминах кластеров объектов, сходных между собой, тогда эта структура, скорее всего, должна быть отражена в иерархическом дереве различными ветвями. В результате успешного анализа методом объединения появляется возможность обнаружить кластеры (ветви) и интерпретировать их.

Меры расстояния

Объединение или метод древовидной кластеризации используется при формировании кластеров несходства или расстояния между объектами. Эти расстояния могут определяться в одномерном или многомерном пространстве. Например, если вы должны кластеризовать типы еды в кафе, то можете принять во внимание количество содержащихся в ней калорий, цену, субъективную оценку вкуса и т.д.

Наиболее прямой путь вычисления расстояний между объектами в многомерном пространстве состоит в вычислении евклидовых расстояний. Если вы имеете двух- или трехмерное пространство, то эта мера является реальным геометрическим расстоянием между объектами в пространстве (как будто расстояния между объектами измерены рулеткой).

Однако алгоритм объединения не «заботится» о том, являются ли «предоставленные» для этого расстояния настоящими или некоторыми другими производными мерами расстояния, что более значимо для исследователя; и задачей исследователей является подобрать правильный метод для специфических применений.

  1. Евклидово расстояние.
  2. Это, по-видимому, наиболее общий тип расстояния. Оно попросту является геометрическим расстоянием в многомерном пространстве и вычисляется следующим образом:

    Заметим, что евклидово расстояние (и его квадрат) вычисляется по исходным, а не по стандартизованным данным. Это обычный способ его вычисления, который имеет определенные преимущества (например, расстояние между двумя объектами не изменяется при введении в анализ нового объекта, который может оказаться выбросом).

    Тем не менее, на расстояния могут сильно влиять различия между осями, по координатам которых вычисляются эти расстояния.

    К примеру, если одна из осей измерена в сантиметрах, а вы потом переведете ее в миллиметры (умножая значения на 10), то окончательное евклидово расстояние (или квадрат евклидова расстояния), вычисляемое по координатам, сильно изменится, и, как следствие, результаты кластерного анализа могут сильно отличаться от предыдущих.

  3. Квадрат евклидова расстояния.
  4. Иногда может возникнуть желание возвести в квадрат стандартное евклидово расстояние, чтобы придать большие веса более отдаленным друг от друга объектам. Это расстояние вычисляется следующим образом:

  5. Расстояние городских кварталов (манхэттенское расстояние).
  6. Это расстояние является просто средним разностей по координатам. В большинстве случаев эта мера расстояния приводит к таким же результатам, как и для обычного расстояния Евклида.

    Однако отметим, что для этой меры влияние отдельных больших разностей (выбросов) уменьшается (так как они не возводятся в квадрат). Манхэттенское расстояние вычисляется по формуле:

  7. Расстояние Чебышева.
  8. Это расстояние может оказаться полезным, когда желают определить два объекта как «различные», если они различаются по какой-либо одной координате (каким-либо одним измерением). Расстояние Чебышева вычисляется по формуле:

  9. Степенное расстояние.

    Иногда желают прогрессивно увеличить или уменьшить вес, относящийся к размерности, для которой соответствующие объекты сильно отличаются. Это может быть достигнуто с использованием степенного расстояния. Степенное расстояние вычисляется по формуле:

    где r и p - параметры, определяемые пользователем.

    Несколько примеров вычислений могут показать, как «работает» эта мера:

    • Параметр p ответственен за постепенное взвешивание разностей по отдельным координатам.
    • Параметр r ответственен за прогрессивное взвешивание больших расстояний между объектами.
    • Если оба параметра - r и p, равны двум, то это расстояние совпадает с расстоянием Евклида.
  10. Процент несогласия.
  11. Эта мера используется в тех случаях, когда данные являются категориальными. Это расстояние вычисляется по формуле:

Правила объединения или связи

На первом шаге, когда каждый объект представляет собой отдельный кластер, расстояния между этими объектами определяются выбранной мерой. Однако когда связываются вместе несколько объектов, возникает вопрос, как следует определить расстояния между кластерами?

Другими словами, необходимо правило объединения или связи для двух кластеров. Здесь имеются различные возможности: например, вы можете связать два кластера вместе, когда любые два объекта в двух кластерах ближе друг к другу, чем соответствующее расстояние связи.

Другими словами, вы используете «правило ближайшего соседа» для определения расстояния между кластерами; этот метод называется методом одиночной связи. Это правило строит «волокнистые» кластеры, т.е. кластеры, «сцепленные вместе» только отдельными элементами, случайно оказавшимися ближе остальных друг к другу.

Как альтернативу вы можете использовать соседей в кластерах, которые находятся дальше всех остальных пар объектов друг от друга. Этот метод называется метод полной связи. Существует также множество других методов объединения кластеров, подобных тем, что были рассмотрены.

  • Одиночная связь (метод ближайшего соседа).
  • Как было описано выше, в этом методе расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах.

    Это правило должно, в известном смысле, нанизывать объекты вместе для формирования кластеров, и результирующие кластеры имеют тенденцию быть представленными длинными «цепочками».

  • Полная связь (метод наиболее удаленных соседей).
  • В этом методе расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. «наиболее удаленными соседями»).

    Этот метод обычно работает очень хорошо, когда объекты происходят на самом деле из реально различных «рощ».

    Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является «цепочечным», то этот метод непригоден.

  • Невзвешенное попарное среднее.
  • В этом методе расстояние между двумя различными кластерами вычисляется как среднее расстояние между всеми парами объектов в них. Метод эффективен, когда объекты в действительности формируют различные «рощи», однако он работает одинаково хорошо и в случаях протяженных («цепочного» типа) кластеров.

    Отметим, что в своей книге Снит и Сокэл (Sneath, Sokal, 1973) вводят аббревиатуру UPGMA для ссылки на этот метод, как на метод невзвешенного попарного арифметического среднего - unweighted pair-group method using arithmetic averages.

  • Взвешенное попарное среднее.
  • Метод идентичен методу невзвешенного попарного среднего, за исключением того, что при вычислениях размер соответствующих кластеров (т.е. число объектов, содержащихся в них) используется в качестве весового коэффициента. Поэтому предлагаемый метод должен быть использован, когда предполагаются неравные размеры кластеров.

    В книге Снита и Сокэла (Sneath, Sokal, 1973) вводится аббревиатура WPGMA для ссылки на этот метод, как на метод взвешенного попарного арифметического среднего - weighted pair-group method using arithmetic averages.

  • Невзвешенный центроидный метод.
  • В этом методе расстояние между двумя кластерами определяется как расстояние между их центрами тяжести.

    Снит и Сокэл (Sneath and Sokal (1973)) используют аббревиатуру UPGMC для ссылки на этот метод, как на метод невзвешенного попарного центроидного усреднения - unweighted pair-group method using the centroid average.

  • Взвешенный центроидный метод (медиана).
  • Этот метод идентичен предыдущему, за исключением того, что при вычислениях используются веса для учета разницы между размерами кластеров (т.е. числами объектов в них).

    Поэтому, если имеются (или подозреваются) значительные отличия в размерах кластеров, этот метод оказывается предпочтительнее предыдущего.

    Снит и Сокэл (Sneath, Sokal 1973) использовали аббревиатуру WPGMC для ссылок на него, как на метод невзвешенного попарного центроидного усреднения - weighted pair-group method using the centroid average.

  • Метод Варда.
  • Этот метод отличается от всех других методов, поскольку он использует методы дисперсионного анализа для оценки расстояний между кластерами. Метод минимизирует сумму квадратов (SS) для любых двух (гипотетических) кластеров, которые могут быть сформированы на каждом шаге.

    Подробности можно найти в работе Варда (Ward, 1963). В целом метод представляется очень эффективным, однако он стремится создавать кластеры малого размера.

Двувходовое объединение

Ранее этот метод обсуждался в терминах «объектов», которые должны быть кластеризованы. Во всех других видах анализа интересующий исследователя вопрос обычно выражается в терминах наблюдений или переменных. Оказывается, что кластеризация, как по наблюдениям, так и по переменным может привести к достаточно интересным результатам.

Например, представьте, что медицинский исследователь собирает данные о различных характеристиках (переменные) состояний пациентов (наблюдений), страдающих сердечными заболеваниями. Исследователь может захотеть кластеризовать наблюдения (пациентов) для определения кластеров пациентов со сходными симптомами.

В то же самое время исследователь может захотеть кластеризовать переменные для определения кластеров переменных, которые связаны со сходным физическим состоянием. После этого обсуждения, относящегося к тому, кластеризовать наблюдения или переменные, можно задать вопрос, а почему бы не проводить кластеризацию в обоих направлениях?

Модуль Кластерный анализ содержит эффективную двувходовую процедуру объединения, позволяющую сделать именно это. Однако двувходовое объединение используется (относительно редко) в обстоятельствах, когда ожидается, что и наблюдения и переменные одновременно вносят вклад в обнаружение осмысленных кластеров.

Так, возвращаясь к предыдущему примеру, можно предположить, что медицинскому исследователю требуется выделить кластеры пациентов, сходных по отношению к определенным кластерам характеристик физического состояния.

Трудность с интерпретацией полученных результатов возникает вследствие того, что сходства между различными кластерами могут происходить из (или быть причиной) некоторого различия подмножеств переменных. Поэтому получающиеся кластеры являются по своей природе неоднородными.

Возможно это кажется вначале немного туманным; в самом деле, в сравнении с другими описанными методами кластерного анализа, двувходовое объединение является, вероятно, наименее часто используемым методом. Однако некоторые исследователи полагают, что он предлагает мощное средство разведочного анализа данных (за более подробной информацией вы можете обратиться к описанию этого метода у Хартигана (Hartigan, 1975)).

Метод K средних

Этот метод кластеризации существенно отличается от таких агломеративных методов, как Объединение (древовидная кластеризация) и Двувходовое объединение. Предположим, вы уже имеете гипотезы относительно числа кластеров (по наблюдениям или по переменным).

Вы можете указать системе образовать ровно три кластера так, чтобы они были настолько различны, насколько это возможно. Это именно тот тип задач, которые решает алгоритм метода K средних. В общем случае метод K средних строит ровно K различных кластеров, расположенных на возможно больших расстояниях друг от друга.

В примере с физическим состоянием, медицинский исследователь может иметь «подозрение» из своего клинического опыта, что его пациенты в основном попадают в три различные категории. Далее он может захотеть узнать, может ли его интуиция быть подтверждена численно, то есть, в самом ли деле кластерный анализ K средних даст три кластера пациентов, как ожидалось?

Если это так, то средние различных мер физических параметров для каждого кластера будут давать количественный способ представления гипотез исследователя (например, пациенты в кластере 1 имеют высокий параметр 1, меньший параметр 2 и т.д.).

С вычислительной точки зрения вы можете рассматривать этот метод, как дисперсионный анализ «наоборот».

Программа начинает с K случайно выбранных кластеров, а затем изменяет принадлежность объектов к ним, чтобы:

  1. минимизировать изменчивость внутри кластеров,
  2. максимизировать изменчивость между кластерами.

Данный способ аналогичен методу «дисперсионный анализ (ANOVA) наоборот» в том смысле, что критерий значимости в дисперсионном анализе сравнивает межгрупповую изменчивость с внутригрупповой при проверке гипотезы о том, что средние в группах отличаются друг от друга.

В кластеризации методом K средних программа перемещает объекты (т.е. наблюдения) из одних групп (кластеров) в другие для того, чтобы получить наиболее значимый результат при проведении дисперсионного анализа (ANOVA). Обычно, когда результаты кластерного анализа методом K средних получены, можно рассчитать средние для каждого кластера по каждому измерению, чтобы оценить, насколько кластеры различаются друг от друга.

В идеале вы должны получить сильно различающиеся средние для большинства, если не для всех измерений, используемых в анализе. Значения F-статистики, полученные для каждого измерения, являются другим индикатором того, насколько хорошо соответствующее измерение дискриминирует кластеры.

Источник: "biometrica.tomsk.ru"

Классификация объектов по характеризующим их признакам

Кластерный анализ (cluster analysis) – совокупность многомерных статистических методов классификации объектов по характеризующим их признакам, разделение совокупности объектов на однородные группы, близкие по определяющим критериям, выделение объектов определенной группы.

Кластер – это группы объектов, выделенные в результате кластерного анализа на основе заданной меры сходства или различий между объектами. Объект – это конкретные предметы исследования, которые необходимо классифицировать. Объектами при классификации выступают, как правило, наблюдения. Например, потребители продукции, страны или регионы, товары и т.п.

Хотя можно проводить кластерный анализ и по переменным. Классификация объектов в многомерном кластерном анализе происходит по нескольким признакам одновременно.Это могут быть как количественные, так и категориальные переменные в зависимости от метода кластерного анализа. Итак, главная цель кластерного анализа – нахождение групп схожих объектов в выборке.

Совокупность многомерных статистических методов кластерного анализа можно разделить на иерархические методы (агломеративные и дивизимные) и неиерархические (метод k-средних, двухэтапный кластерный анализ).

Однако общепринятой классификации методов не существует, и к методам кластерного анализа иногда относят также методы построения деревьев решений, нейронных сетей, дискриминантного анализа, логистической регрессии.

Сфера использования кластерного анализа, из-за его универсальности, очень широка. Кластерный анализ применяют в экономике, маркетинге, археологии, медицине, психологии, химии, биологии, государственном управлении, филологии, антропологии, социологии и других областях.

Вот несколько примеров применения кластерного анализа:

  • медицина – классификация заболеваний, их симптомов, способов лечения, классификация групп пациентов;
  • маркетинг – задачи оптимизации ассортиментной линейки компании, сегментация рынка по группам товаров или потребителей, определение потенциального потребителя;
  • социология – разбиение респондентов на однородные группы;
  • психиатрия – корректная диагностика групп симптомов является решающей для успешной терапии;
  • биология – классификация организмов по группе;
  • экономика – классификация субъектов РФ по инвестиционной привлекательности.

Источник: "statmethods.ru"

Общие сведения о кластерном анализе

Кластерный анализ включает в себя набор различных алгоритмов классификации. Общий вопрос, задаваемый исследователями во многих областях, состоит в том, как организовать наблюдаемые данные в наглядные структуры.

Например, биологи ставят цель разбить животных на различные виды, чтобы содержательно описать различия между ними.

Задача кластерного анализа состоит в разбиении исходной совокупности объектов на группы схожих, близких между собой объектов. Эти группы называют кластерами.

Другими словами, кластерный анализ – это один из способов классификации объектов по их признакам. Желательно, чтобы результаты классификации имели содержательную интерпретацию.

Результаты, полученные методами кластерного анализа, применяют в самых различных областях:

  1. В маркетинге – это сегментация конкурентов и потребителей.
  2. В психиатрии для успешной терапии является решающей правильная диагностика симптомов, таких как паранойя, шизофрения и т.д.
  3. В менеджменте важна классификация поставщиков, выявление схожих производственных ситуаций, при которых возникает брак.
  4. В социологии – разбиение респондентов на однородные группы.
  5. В портфельном инвестировании важно сгруппировать ценные бумаги по сходству в тенденции доходности, чтобы составить на основе полученных сведений о фондовом рынке оптимального инвестиционного портфеля, позволяющего максимизировать прибыль от вложений при заданной степени риска.

По сути, кластерный анализ хорошо зарекомендовал себя во всех сферах жизнедеятельности человека. В общем, всякий раз, когда необходимо классифицировать большое количество информации такого рода и представлять ее в виде, пригодном для дальнейшей обработки, кластерный анализ оказывается весьма полезным и эффективным.

Кластерный анализ позволяет рассматривать достаточно большой объем информации и сильно сжимать большие массивы социально-экономической информации, делать их компактными и наглядными.

Большое значение кластерный анализ имеет применительно к совокупностям временных рядов, характеризующих экономическое развитие (например, общехозяйственной и товарной конъюнктуры).

Здесь можно выделять периоды, когда значения соответствующих показателей были достаточно близкими, а также определять группы временных рядов, динамика которых наиболее схожа. В задачах социально-экономического прогнозирования весьма перспективно сочетание кластерного анализа с другими количественными методами (например, с регрессионным анализом).

Преимущества и недостатки

Кластерный анализ позволяет провести объективную классификацию любых объектов, которые охарактеризованы рядом признаков. Из этого можно извлечь ряд преимуществ:

  • Полученные кластеры можно интерпретировать, то есть описывать, какие же собственно группы существуют.
  • Отдельные кластеры можно выбраковывать. Это полезно в тех случаях, когда при наборе данных допущены определенные ошибки, в результате которых значения показателей у отдельных объектов резко отклоняются. При применении кластерного анализа такие объекты попадают в отдельный кластер.
  • Для дальнейшего анализа могут быть выбраны только те кластеры, которые обладают интересующими характеристиками.

Как и любой другой метод, кластерный анализ имеет определенные недостатки и ограничения. В частности:

  1. состав и количество кластеров зависит от выбираемых критериев разбиения,
  2. при сведении исходного массива данных к более компактному виду могут возникать определенные искажения,
  3. могут теряться индивидуальные черты отдельных объектов за счет замены их характеристиками обобщенных значений параметров кластера.

Методы

В настоящее время известно более сотни разных алгоритмов кластеризации. Их разнообразие объясняется не только разными вычислительными методами, но и различными концепциями, лежащими в основе кластеризации. Дать рекомендации для выбора того или иного метода кластеризации можно только в общих чертах, а основной критерий выбора – практическая полезность результата.

В пакете Statistica реализуются следующие методы кластеризации:

  • Иерархические алгоритмы – древовидная кластеризация. В основе иерархических алгоритмов лежит идея последовательной кластеризации. На начальном шаге каждый объект рассматривается как отдельный кластер. На следующем шаге некоторые из ближайших друг к другу кластеров будут объединяться в отдельный кластер.
  • Метод К-средних. Этот метод используется наиболее часто. Он относится к группе так называемых эталонных методов кластерного анализа. Число кластеров К задается пользователем.
  • Двухвходовое объединение. При использовании этого метода кластеризация проводится одновременно как по переменным (столбцам), так и по результатам наблюдений (строкам).

Процедура двухвходового объединения производится в тех случаях, когда можно ожидать, что одновременная кластеризация по переменным и наблюдениям даст возможность получить осмысленные результаты.

Результатами процедуры являются описательные статистики по переменным и наблюдениям, а также двумерная цветная диаграмма, на которой цветом отмечаются значения данных. По распределению цвета можно составить представление об однородных группах.

Нормирование переменных

Разбиение исходной совокупности объектов на кластеры связано с вычислением расстояний между объектами и выбора объектов, расстояние между которыми наименьшее из всех возможных. Наиболее часто используется привычное всем нам евклидово (геометрическое) расстояние. Эта метрика отвечает интуитивным представлениям о близости объектов в пространстве (как будто расстояния между объектами измерены рулеткой).

Но для данной метрики на расстояние между объектами могут сильно влиять изменения масштабов (единиц измерения). Например, если один из признаков измерен в миллиметрах, а затем его значение переведены в сантиметры, евклидово расстояние между объектами сильно изменится. Это приведет к тому, что результаты кластерного анализа могут значительно отличаться от предыдущих.

Если переменные измерены в разных единицах измерения, то требуется их предварительная нормировка, то есть преобразование исходных данных, которое переводит их в безразмерные величины.

Нормировка сильно искажает геометрию исходного пространства, что может изменить результаты кластеризации. В пакете Statistica нормировка любой переменной x выполняется по формуле:

Для этого нужно щелкнуть правой кнопкой мыши по имени переменной и в открывшемся меню выбрать последовательность команд: Fill/ Standardize Block/ Standardize Columns. Значения нормированной переменной станут равными нулю, а дисперсии – единице.

Метод К-средних в программе Statistica

Метод K-средних (K-means) разбивает множество объектов на заданное число K различных кластеров, расположенных на возможно больших расстояниях друг от друга. Обычно, когда результаты кластерного анализа методом K-средних получены, можно рассчитать средние для каждого кластера по каждому измерению, чтобы оценить, насколько кластеры различаются друг от друга.

В идеале вы должны получить сильно различающиеся средние для большинства измерений, используемых в анализе. Значения F-статистики, полученные для каждого измерения, являются другим индикатором того, насколько хорошо соответствующее измерение дискриминирует кластеры.

В качестве примера рассмотрим результаты опроса 17-ти сотрудников предприятия по удовлетворенности показателями качества служебной карьеры. В таблице даны ответы на вопросы анкеты по десятибалльной шкале (1 – минимальный балл, 10 – максимальный).

Имена переменных соответствуют ответам на следующие вопросы:

  1. СЛЦ – сочетание личных целей и целей организации;
  2. ОСО – ощущение справедливости в оплате труда;
  3. ТБД – территориальная близость к дому;
  4. ОЭБ – ощущение экономического благосостояния;
  5. КР – карьерный рост;
  6. ЖСР – желание сменить работу;
  7. ОСБ – ощущение социального благополучия.


Используя эти данные, необходимо разделить сотрудников на группы и для каждой из них выделить наиболее эффективные рычаги управления. При этом различия между группами должны быть очевидными, а внутри группы респонденты должны быть максимально похожи.

На сегодняшний день большинство социологических опросов дает лишь процентное соотношение голосов: считается основное количество положительно ответивших, либо процент неудовлетворенных, но системно этот вопрос не рассматривают. Чаще всего опрос не показывает тенденции изменения ситуации.

Для выявления на основе данных опроса некоторых реально существующих взаимосвязей признаков и порождения на этой основе их типологии можно использовать процедуры кластерного анализа. Наличие каких-либо априорных гипотез социолога при работе процедур кластерного анализа не является необходимым условием.

В программе Statistica кластерный анализ выполняется следующим образом.

  1. Создать файл данных.
  2. Выбрать модуль Statistics/ Multivariable Exploratory Techniques/ Cluster Analysis. Нажать ОК, в результате чего появится диалоговое окно:

  3. В появившемся окне выбрать метод кластеризации K-means clustering и нажать ОК.
  4. В появившемся диалоговом окне необходимо установить следующие настройки:


    • Выбрать переменные кнопкой Variables.
    • Выбрать объекты кластеризации: это могут быть переменные – столбцы (Variables сolumns)), либо наблюдения – строки (Cases (Rows)). Сначала проведем кластеризацию по строкам (Cases(rows)).
    • Выбрать число кластеров.
      Этот выбор делает пользователь, исходя из собственных предположений о числе групп схожих объектов.

      При выборе количества кластеров руководствуйтесь следующим:

      1. Количество кластеров, по возможности, не должно быть слишком большим.
      2. Расстояние, на котором объединялись объекты данного кластера, должно быть, по возможности, гораздо меньше расстояния, на котором к этому кластеру присоединяется еще что-либо.
      При выборе количества кластеров чаще всего есть одновременно несколько правильных решений. Нас интересует, например, как соотносятся ответы на вопросы анкеты у рядовых сотрудников и руководства предприятия. Поэтому выбираем K=2. Для дальнейшей сегментации можно увеличивать число кластеров.
    • Далее необходимо выбрать начальное разбиение объектов по кластерам (Initial cluster centers). Пакет Statistica предлагает:
      1. выбрать наблюдения с максимальным расстоянием между центрами кластеров;
      2. рассортировать расстояния и выбрать наблюдения с постоянными интервалами (установка по умолчанию);
      3. взять первые наблюдения за центры и присоединять остальные объекты к ним.

      Для наших целей подходит первый вариант.

Многие алгоритмы кластеризации часто «навязывают» данным не присущую им структуру и дезориентируют исследователя. Поэтому крайне необходимо применять несколько алгоритмов кластерного анализа и делать выводы на основании общей оценки результатов работы алгоритмов

Результаты анализа можно посмотреть в появившемся диалоговом окне:

Если выбрать вкладку Graph of means, будет построен график координат центров кластеров:


Каждая ломаная линия на этом графике соответствует одному из кластеров:

  • Каждое деление горизонтальной оси графика соответствует одной из переменных, включенных в анализ.
  • Вертикальная ось соответствует средним значениям переменных для объектов, входящих в каждый из кластеров.

Можно отметить, что просматриваются существенные отличия в отношении двух групп людей к служебной карьере почти по все вопросам. Лишь в одном вопросе наблюдается полное единодушие – в ощущении социального благополучия (ОСБ), вернее, отсутствии такового (2,5 балла из 10).

Можно предположить, что:

  1. кластер 1 отображает рабочих,
  2. кластер 2 – руководство:
    • Руководители больше удовлетворены карьерным ростом (КР), сочетанием личных целей и целей организации (СЛЦ).
    • У них выше уровень ощущения экономического благосостояния (ОЭБ) и ощущения справедливости в оплате труда (ОСО).
    • Территориальная близость к дому (ТБД) волнует их меньше, чем рабочих, вероятно, из-за меньших проблем с транспортом.
    • Также у руководителей меньше желания сменить работу (ЖСР).

Несмотря на то, что работники делятся на две категории, они относительно одинаково отвечают на большинство вопросов. Другими словами, если что-то не устраивает общую группу работников, то же самое не устраивает и высшее руководство, и наоборот.

Согласование графиков позволяет сделать выводы о том, что благосостояние одной группы отражается на благосостоянии другой.

Кластер 1 не доволен территориальной близостью к дому. Данной группой является основная часть работников, которые в основном приходят на предприятие с разных сторон города. Следовательно, можно предложить главному руководству направить часть прибыли на строительство жилья для сотрудников предприятия.

Просматриваются существенные отличия в отношении двух групп людей к служебной карьере:

  1. Те сотрудники, которых устраивает карьерный рост, у которых высоко совпадение личных целей и целей организации, не имеют желание сменить работу и ощущают удовлетворенность результатами труда.
  2. И наоборот, сотрудников, желающих сменить работу и неудовлетворенных результатами труда, не устраивают изложенные показатели.

Высшему руководству следует обратить особое внимание на сложившуюся ситуацию.

Результаты дисперсионного анализа по каждому признаку выводятся по нажатию кнопки Analysis of variance:

Выводятся:

  • суммы квадратов отклонения объектов от центров кластеров (SS Within),
  • суммы квадратов отклонений между центрами кластеров (SS Between),
  • значения F-статистики,
  • уровни значимости р.
Для нашего примера уровни значимости для двух переменных довольно велики, что объясняется малым числом наблюдений. В полном варианте исследования, с которым можно ознакомиться в работе, гипотезы о равенстве средних для центров кластеров отклоняются на уровнях значимости меньше 0,01.

Кнопка Save classifications and distances выводит номера объектов, входящих в каждый кластер и расстояния объектов до центра каждого кластера.

Состав каждого кластера и расстояния объектов от центра

В таблице показаны номера наблюдений (CASE_NO), составляющие кластеры с номерами CLUSTER и расстояния от центра каждого кластера (DISTANCE).

Информация о принадлежности объектов к кластерам может быть записана в файл и использоваться в дальнейшем анализе. В данном примере сравнение полученных результатов с анкетами показало, что кластер 1 состоит, в основном, из рядовых работников, а кластер 2 – из менеджеров.

Таким образом, можно заметить, что при обработке результатов анкетирования кластерный анализ оказался мощным методом, позволяющим сделать выводы, к которым невозможно прийти, построив гистограмму средних или посчитав процентное соотношение удовлетворенных различными показателями качества трудовой жизни.

Древовидная кластеризация – это пример иерархического алгоритма, принцип работы которого состоит в последовательном объединении в кластер сначала самых близких, а затем и все более отдаленных друг от друга элементов. Большинство из этих алгоритмов исходит из матрицы сходства (расстояний), и каждый отдельный элемент рассматривается вначале как отдельный кластер.

После загрузки модуля кластерного анализа и выбора Joining (tree clustering), в окне ввода параметров кластеризации можно изменить следующие параметры:

  1. Исходные данные (Input). Они могут быть в виде матрицы исследуемых данных (Raw data) и в виде матрицы расстояний (Distance matrix).
  2. Кластеризацию (Cluster) наблюдений (Cases (raw)) или переменных (Variable (columns)), описывающих состояние объекта.
  3. Меры расстояния (Distance measure). Здесь возможен выбор следующих мер:
    • евклидово расстояние (Euclidean distances),
    • квадрат Евклидова расстояния (Squared Euclidean distances),
    • расстояние городских кварталов (манхэттенское расстояние, City-block (Manhattan) distance), расстояние Чебышева (Chebychev distance metric),
    • степенное расстояние (Power…;),
    • процент несогласия (Percent disagreement).
  4. Метод кластеризации (Amalgamation (linkage) rule).
    Здесь возможны следующие варианты:
    • одиночная связь (метод ближайшего соседа) (Single Linkage),
    • полная связь (метод наиболее удаленных соседей) (Complete Linkage),
    • невзвешенное попарное среднее (Unweighted pair-group average),
    • взвешенное попарное среднее (Weighted pair-group average),
    • невзвешенный центроидный метод (Unweighted pair-group centroid),
    • взвешенный центроидный метод (медиана) (Weighted pair-group centroid (median)),
    • метод Уорда (Ward’s method).

В результате кластеризации строится горизонтальная или вертикальная дендрограмма – график, на котором определены расстояния между объектами и кластерами при их последовательном объединении.

Древовидная структура графика позволяет определить кластеры в зависимости от выбранного порога – заданного расстояния между кластерами.

Кроме того, выводится матрица расстояний между исходными объектами (Distance matrix); средние и среднеквадратичные отклонения для каждого исходного объекта (Distiptive statistics). Для рассмотренного примера проведем кластерный анализ переменных с установками по умолчанию. Результирующая дендрограмма изображена на рисунке:


На вертикальной оси дендрограммы откладываются расстояния между объектами и между объектами и кластерами. Так, расстояние между переменными ОЭБ и ОСО равно пяти. Эти переменные на первом шаге объединяются в один кластер.

Горизонтальные отрезки дендрограммы проводятся на уровнях, соответствующих пороговым значениям расстояний, выбираемым для данного шага кластеризации.

Из графика видно, что вопрос «желание сменить работу» (ЖСР) образует отдельный кластер. Вообще, желание свалить куда угодно посещает всех в равной степени. Далее отдельный кластер составляет вопрос о территориальной близости к дому (ТБД).

По степени важности он стоит на втором месте, что подтверждает вывод о необходимости строительства жилья, сделанный по результатам исследования методом K-средних.

Ощущение экономического благосостояния (ОЭБ) и справедливости в оплате труда (ОСО) объединены - это блок экономических вопросов. Карьерный рост (КР) и сочетание личных целей и целей организации (СЛЦ) также объединены.

Другие методы кластеризации, а также выбор других видов расстояний не приводит к существенному изменению дендрограммы.

Результаты

  1. Кластерный анализ является мощным средством разведочного анализа данных и статистических исследований в любой предметной области.
  2. В программе Statistica реализованы как иерархические, так и структурные методы кластерного анализа. Преимущества этого статистического пакета обусловлены их графическими возможностями. Предусмотрены двумерные и трехмерные графические отображения полученных кластеров в пространстве исследуемых переменных, а также результаты работы иерархической процедуры группирования объектов.
  3. Необходимо применять несколько алгоритмов кластерного анализа и делать выводы на основании общей оценки результатов работы алгоритмов.
  4. Кластерный анализ можно считать успешным, если он выполнен разными способами, проведено сравнение результатов и найдены общие закономерности, а также найдены стабильные кластеры независимо от способа кластеризации.
  5. Кластерный анализ позволяет выявить проблемные ситуации и наметить пути их решения. Следовательно, этот метод непараметрической статистики можно рассматривать как составную часть системного анализа.

Кластерным анализом называются разнообразные формализованные процедуры построения классификаций объектов. Лидирующей наукой в развитии кластерного анализа была биология. Предмет кластерного анализа (от англ. «cluster» - гроздь, пучок, группа) был сформулирован в 1939 г. психологом Робертом Трионом. Классиками кластерного анализа являются американские систематики Роберт Сокэл и Питер Снит. Одно из важнейших их достижений в этой области - книга «Начала численной таксономии», выпущенная в 1963 году. В соответствии с основной идеей авторов, классификация должна строится не на смешении плохо формализованных суждений о сходстве и родстве объектов, а на результатах формализованной обработки результатов математического вычисления сходств/отличий классифицируемых объектов. Для выполнения этой задачи нужны были соответствующие процедуры, разработкой которых и занялись авторы.

Основные этапы кластерного анализа таковы:
1. выбор сравнимых друг с другом объектов;
2. выбор множества признаков, по которому будет проводиться сравнение, и описание объектов по этим признакам;
3. вычисление меры сходства между объектами (или меры различия объектов) в соответствии с избранной метрикой ;
4. группировка объектов в кластеры с помощью той или иной процедуры объединения ;
5. проверка применимости полученного кластерного решения.

Итак, важнейшими характеристиками процедуры кластеризации является выбор метрики (в разных ситуациях используется значительное количество разных метрик) и выбор процедуры объединения (и в этом случае для выбора доступно значительное количество различных вариантов). Для разных ситуаций в большей степени подходят одни или другие метрики и процедуры объединения, но в определенной степени выбор между ними является вопросом вкуса и традиции. Как более подробно объясняется в статье Кластеры, клады и химера объективности , надежда на то, что кластерный анализ приведет к построению классификации, никак не зависимой от произвола исследователя, оказывается недостижимой. Из пяти перечисленных этапов исследования с использованием кластерного анализа только этап 4 не связан с принятием более-менее произвольного решения, влияющего на конечный результат. И выбор объектов, и выбор признаков, и выбор метрики вместе с процедурой объединения существенно влияют на конечный результат. Этот выбор может зависит от многих обстоятельств, а том числе - от явных и неявных предпочтений и ожиданий исследования. Увы, указанное обстоятельство влияет не только на результат кластерного анализа. Со сходными проблемами сталкиваются все "объективные" методы, включая все методы кладистики.

Существует ли единственно правильное решение, которое надо найти, выбирая совокупность объектов, набор признаков, тип метрики и процедуру объединения? Нет. Чтобы доказать это, приведем фрагмент статьи, ссылка на которую дана в предыдущем абзаце.

"На самом деле, мы не всегда можем даже твердо ответить на вопрос, какие объекты более похожи друг на друга, а какие отличаются сильнее. Увы, для выбора метрики сходств и различий между классифицируемыми объектами общепринятых (а тем более «объективных») критериев попросту нет.

На какой объект более похож объект А: на B или на C? Если использовать в качестве метрики сходства расстояние, то на C: |AC|<|AB|. А если полагаться на корреляцию между показанными на рисунке признаками (которую можно описать как угол между вектором, идущим к объекту из начала координат, и осью абсцисс), то на B: . А как правильно? А единственно правильного ответа нет. С одной стороны, взрослая жаба более похожа на взрослую лягушку (обе взрослые), с другой - на молодую жабу (обе жабы)! Правильность ответа зависит от того, что мы считаем более важным ".

Кластерный анализ нашел широчайшее применение в современной науке. К сожалению, в значительной части тех случаев, когда его употребляют, лучше было бы использовать иные методы. В любом случае, стециалистам-биологом надо отчетливо понимать основную логику кластерного анализа, и только в этом случае они смогут применять его в тех случаях, где он адекватен, и не применять тогда, когда оптимальным является выбор иного метода.

8.2. Пример выполнения кластерного анализа "на пальцах"

Чтобы пояснить типичную логику кластерного анализа, рассмотрим его наглядный пример. Рассмотрим совокупность из 6 объектов (обозначенных буквами), охарактеризованных по 6 признакам самого простого типа: альтернативных, принимающих одно из двух значений: характерен (+) и нехарактерен (-). Описание объектов по принятым признакам называется "прямоугольной" матрицей. В нашем случае речь идет о матрице 6×6, т.е. ее можно считать вполне "квадратной", но в общем случае количество объектов в анализе может не быть равно количеству признаков, и "прямоугольная" матрица может иметь разное количество строк и столбцов. Итак, зададим "прямоугольную" матрицу (матрицу объекты/признаки):

Выбор объектов и описание их по определенному набору признаков соответствуют двум первым этапам кластерного анализа. Следующий этап - построение матрицы сходств или различий ("квадратной" матрицы, матрицы объекты/объекты). Для этого нам надо выбрать метрику. Поскольку наш пример носит условный характер, имеет смысл выбрать самую простую метрику. Как проще всего определить расстояние между объектами A и B? Посчитать количество отличий между ними. Как вы можете увидеть, объекты A и B отличаются по признакам 3 и 5, итого, расстояние между этими двумя объектами соответствует двум единицам.

Пользуясь этой метрикой, построим "квадратную" матрицу (матрицу объекты/ объекты). Как легко убедиться, такая матрица состоит из двух симметричных половин, и заполнять можно только одну из таких половин:

В данном случае мы построили матрицу различий. Матрица сходства выглядела бы подобным образом, только на каждой позиции стояла бы величина, равная разности между максимальной дистанции (6 единиц) и различию между объектами. Для пары A и B, естественно, сходство составило бы 4 единицы.

Какие два объекта ближе всего друг к другу? B и F, они отличаются только по одному признаку. Суть кластерного анализа - в объединении подобных объектов в кластер. Объединяем объекты B и F в кластер (B F). Покажем это на схеме. Как вы видите, объекты объединены на том уровне, который соответствует дистанции между ними.

Рис. 8.2.1. Первый шаг кластеризации условного набора из 6 объектов

Теперь у нас не шесть объектов, а пять. Перестраиваем "квадратную" матрицу. Для этого нам потребуется определить, чему равно расстояние от каждого объекта до кластера. Растояние от A до B составляло 2 единицы, а от A до F - 3 единицы. Чему равно расстояние от A до (BF)? Правильного ответа тут нет. Вот, посмотрите, как расположены друг относительно друга эти три объекта.

Рис. 8.2.2. Взаимное расположение трех объектов

Может быть, расстояние от объекта до группы - это расстояние от объекта до ближайшего к нему объекта в составе группы, т .е., │A(BF) │=│AB │? Эта логика соответствует присоединению по максимальному сходству .

А может быть, расстояние от объекта до группы - это расстояние от объекта до наиболее удаленного от него объекта в составе группы, т .е., │A(BF) │=│AF │? Эта логика соответствует присоединению по минимальному сходству .

Можно также считать, что расстояние от объекта до группы - это среднее арифметическое расстояний от этого объекта до каждого из объектов в составе группы, т .е., │A(BF) │=(│AB │+│AF │)/2. Это решение называется присоединением по среднему сходству .

Правильным являются все эти три решения и еще значительное количество иных, не охарактеризованных здесь решений. Наша задача состоит в том, чтобы выбрать решение, более подходящее для той категории, к которой относятся наши данные. Присоединение по максимальному сходству приводит, в конечном счете, к длинным, "лентовидным" кластерам. По минимальному - к дроблению групп. Выбирая между тремя охарактеризованными вариантами, в биологии чаще используют присоединение по среднему сходству. Воспользуемся им и мы. В таком случае после первого шага кластеризации "квадратная" матрица будет выглядеть так.

Теперь самой близкой парой объектов являются D и E. Объединим и их тоже.

Рис. 8.2.3. Второй шаг кластеризации условного набора из 6 объектов

Перестроим "квадратную" матрицу для четырех объектов.

Мы видим, что тут есть две возможности для объединения на уровне 2,5: присоединение A к (BF) и присоединение (BF) к (DE). Какую из них выбрать?

У нас есть различные варианты, как делать такой выбор. Его можно сделать случайно. Можно принять какое-то формальное правило, позволяющее сделать выбор. А можно посмотреть, какое из решений даст лучший вариант кластеризации. Воспользуемся последним вариантом. Вначале реализуем первую возможность.

Рис. 8.2.4. Первый вариант третьего шага кластеризации условного набора из 6 объектов

Выбрав этот вариант, мы должны были бы построить такую "квадратную" матрицу 3×3.

Если бы мы выбрали второй вариант третьего шага, у нас получилась бы следующая картина.

Рис. 8.2.5. Второй вариант третьего шага кластеризации условного набора из 6 объектов

Ему соответствует такая матрица 3×3:

Получившиеся матрицы 3×3 можно сравнить, и убедиться, что более компактная группировка объектов достигается во втором варианте. При построении классификации объектов с помощью кластерного анализа мы должны стремиться выделить группы, которые объединяют сходные объекты. Чем выше сходство объектов в группах, тем лучше такая классификация. Поэтому мы выбираем второй вариант третьего шага кластеризации. Мы, конечно, могли сделать следующие шаги (и разделить первый вариант еще на два подварианта), но, в конце концов, убедились бы, что лучшим вариантом третьего шага кластеризации является именно тот, который показан на рис. 8.5. Останавливаемся на нем.

В таком случае, следующим шагом является объединение объектов A и C, показанный на рис. 8.6.

Рис. 8.2.6. Четвертый шаг кластеризации

Строим матрицу 2×2:

Теперь выбирать уже нечего. Объединим два оставшихся кластера на требуемом уровне. В соответствии с принятой стилистикой построения кластерных "деревьев" добавим еще "ствол", который тянется до уровня максимально возможной при данном наборе признаков дистанции между объектами.

Рис. 8.2.7. Пятый и последний шаг кластеризации

Получившаяся картина является древовидным графом (совокупностью вершин и связей между ними). Этот граф построен так, что образующие его линии пересекают друг друга (мы показали эти пересечения "мостиками"). Без изменения характера связи между объектами граф можно перестроить так, чтобы в нем не было никаких пересечений. Эти и сделано на рис. 8.2.8.

Рис. 8.2.8. Окончательный вид древовидного графа, полученного в результате кластеризации

Кластерный анализ нашего условного примера закончен. Нам осталось только понять, что же мы получили.

8.3. Принципиальные ограничения и недостатки кластерного анализа

Как интерпретировать граф, показанный на рис. 8.2.8? Однозначного ответа нет. Чтобы ответить на этот вопрос, надо понимать, какие данные и для какой цели мы кластеризовали. "На поверхности" лежит вывод, что мы зарегистрировали, что исходная совокупность из 6 объектов состоит из трех пар. Глядя на получившийся график, в этом трудно усомниться. Однако справедлив ли этот вывод?

Вернитесь к самой первой "квадратной" матрице 6×6 и убедитесь: объект E находился на расстоянии в две единицы и от объекта D, и от объекта F. Сходство E и D на итоговом "дереве" отражено, а вот то, что объект E был столь же близок к объекту F - потерялось без следа! Как это объяснить?

В том результате кластеризации, который показан на рис. 8.2.8, полностью отсутствует информация о дистанции │EF │, там есть только информация о дистанциях │DE │ и │(BF)(DE) │!

Каждой "прямоугольной" матрице в случае, когда выбрана определенная метрика и способ присоединения, соответствует одна-единственная "квадратная" матрица. Однако каждой "квадратной" матрице может соответствовать много "прямоугольных" матриц. После каждого шага анализа каждой предшествовавшей "квадратной" матрице соответствует следующая, но, исходя из следующей, мы не смогли бы восстановить предшествовавшую. Это означает, что при каждом шаге кластерного анализа необратимо теряется некая часть информации о разнообразии исходного набора объектов.

Указанное обстоятельство является одним из серьезных недостатков кластерного анализа.

Еще один из коварных недостатков кластерного анализа упомянут в статье

Одним из инструментов для решения экономических задач является кластерный анализ. С его помощью кластеры и другие объекты массива данных классифицируются по группам. Данную методику можно применять в программе Excel. Посмотрим, как это делается на практике.

С помощью кластерного анализа можно проводить выборку по признаку, который исследуется. Его основная задача – разбиение многомерного массива на однородные группы. В качестве критерия группировки применяется парный коэффициент корреляции или эвклидово расстояние между объектами по заданному параметру. Наиболее близкие друг к другу значения группируются вместе.

Хотя чаще всего данный вид анализа применяют в экономике, его также можно использовать в биологии (для классификации животных), психологии, медицине и во многих других сферах деятельности человека. Кластерный анализ можно применять, используя для этих целей стандартный набор инструментов Эксель.

Пример использования

Имеем пять объектов, которые характеризуются по двум изучаемым параметрам – x и y .

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Презентация на тему: Невербальные средства общения Презентация на тему: Невербальные средства общения Турагент: бесплатные путешествия или нервная работа? Турагент: бесплатные путешествия или нервная работа? Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений Современные проблемы науки и образования Факторы, влияющие на процесс принятия решений